| @@ -56,30 +56,32 @@ PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU | |||||
| Import TF.NET and Keras API in your project. | Import TF.NET and Keras API in your project. | ||||
| ```cs | |||||
| ```csharp | |||||
| using static Tensorflow.Binding; | using static Tensorflow.Binding; | ||||
| using static Tensorflow.KerasApi; | using static Tensorflow.KerasApi; | ||||
| using Tensorflow; | |||||
| using NumSharp; | |||||
| ``` | ``` | ||||
| Linear Regression in `Eager` mode: | Linear Regression in `Eager` mode: | ||||
| ```c# | |||||
| ```csharp | |||||
| // Parameters | // Parameters | ||||
| var training_steps = 1000; | var training_steps = 1000; | ||||
| var learning_rate = 0.01f; | var learning_rate = 0.01f; | ||||
| var display_step = 100; | var display_step = 100; | ||||
| // Sample data | // Sample data | ||||
| var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, | |||||
| var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, | |||||
| 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); | 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); | ||||
| var train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, | |||||
| var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, | |||||
| 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); | 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); | ||||
| var n_samples = train_X.shape[0]; | |||||
| var n_samples = X.shape[0]; | |||||
| // We can set a fixed init value in order to demo | // We can set a fixed init value in order to demo | ||||
| var W = tf.Variable(-0.06f, name: "weight"); | var W = tf.Variable(-0.06f, name: "weight"); | ||||
| var b = tf.Variable(-0.73f, name: "bias"); | var b = tf.Variable(-0.73f, name: "bias"); | ||||
| var optimizer = tf.optimizers.SGD(learning_rate); | |||||
| var optimizer = keras.optimizers.SGD(learning_rate); | |||||
| // Run training for the given number of steps. | // Run training for the given number of steps. | ||||
| foreach (var step in range(1, training_steps + 1)) | foreach (var step in range(1, training_steps + 1)) | ||||