diff --git a/src/TensorFlowNET.Core/Operations/gen_array_ops.cs b/src/TensorFlowNET.Core/Operations/gen_array_ops.cs index 9810d32f..8367c2f9 100644 --- a/src/TensorFlowNET.Core/Operations/gen_array_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_array_ops.cs @@ -2,6 +2,7 @@ using Tensorflow.Eager; using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; namespace Tensorflow; @@ -25,6 +26,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatrixBandPart", name) { args = new object[] { input, num_lower, num_upper }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -76,6 +81,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatrixDiag", name) { args = new object[] { diagonal }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -125,6 +134,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatrixDiagPart", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -175,6 +188,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatrixSetDiag", name) { args = new object[] { input, diagonal }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -238,6 +255,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchToSpace", name) { args = new object[] { input, crops }, attrs = new Dictionary() { ["block_size"] = block_size } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -301,6 +322,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchToSpaceND", name) { args = new object[] { input, block_shape, crops }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -407,6 +432,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Bitcast", name) { args = new object[] { input }, attrs = new Dictionary() { ["type"] = type } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -464,6 +493,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BroadcastArgs", name) { args = new object[] { s0, s1 }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -520,6 +553,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BroadcastGradientArgs", name) { args = new object[] { s0, s1 }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -607,6 +644,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BroadcastTo", name) { args = new object[] { input, shape }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -689,6 +730,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "CheckNumerics", name) { args = new object[] { tensor }, attrs = new Dictionary() { ["message"] = message } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -752,6 +797,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "CheckNumericsV2", name) { args = new object[] { tensor }, attrs = new Dictionary() { ["message"] = message } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -803,6 +852,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Concat", name) { args = new object[] { concat_dim, values }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -871,6 +924,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ConcatOffset", name) { args = new object[] { concat_dim, shape }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -925,6 +982,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ConcatV2", name) { args = new object[] { values, axis }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -986,6 +1047,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ConjugateTranspose", name) { args = new object[] { x, perm }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1041,6 +1106,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Const", name) { args = new object[] { }, attrs = new Dictionary() { ["value"] = value, ["dtype"] = dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1098,6 +1167,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DebugGradientIdentity", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1182,6 +1255,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DeepCopy", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1330,6 +1407,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DepthToSpace", name) { args = new object[] { input }, attrs = new Dictionary() { ["block_size"] = block_size, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1452,6 +1533,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Dequantize", name) { args = new object[] { input, min_range, max_range }, attrs = new Dictionary() { ["mode"] = mode, ["narrow_range"] = narrow_range, ["axis"] = axis, ["dtype"] = dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1532,6 +1617,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Diag", name) { args = new object[] { diagonal }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1603,6 +1692,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DiagPart", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1674,6 +1767,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EditDistance", name) { args = new object[] { hypothesis_indices, hypothesis_values, hypothesis_shape, truth_indices, truth_values, truth_shape }, attrs = new Dictionary() { ["normalize"] = normalize } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1731,6 +1828,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Empty", name) { args = new object[] { shape }, attrs = new Dictionary() { ["dtype"] = dtype, ["init"] = init } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1793,6 +1894,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EnsureShape", name) { args = new object[] { input }, attrs = new Dictionary() { ["shape"] = shape } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1878,6 +1983,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ExpandDims", name) { args = new object[] { input, dim }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1954,6 +2063,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ExtractImagePatches", name) { args = new object[] { images }, attrs = new Dictionary() { ["ksizes"] = ksizes, ["strides"] = strides, ["rates"] = rates, ["padding"] = padding } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2030,6 +2143,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ExtractVolumePatches", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksizes"] = ksizes, ["strides"] = strides, ["padding"] = padding } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2110,6 +2227,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxArgs", name) { args = new object[] { inputs }, attrs = new Dictionary() { ["min"] = min, ["max"] = max, ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2168,6 +2289,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxArgsGradient", name) { args = new object[] { gradients, inputs }, attrs = new Dictionary() { ["min"] = min, ["max"] = max, ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2254,6 +2379,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxVars", name) { args = new object[] { inputs, min, max }, attrs = new Dictionary() { ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2320,6 +2449,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxVarsGradient", name) { args = new object[] { gradients, inputs, min, max }, attrs = new Dictionary() { ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2407,6 +2540,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxVarsPerChannel", name) { args = new object[] { inputs, min, max }, attrs = new Dictionary() { ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2473,6 +2610,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxVarsPerChannelGradient", name) { args = new object[] { gradients, inputs, min, max }, attrs = new Dictionary() { ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2551,6 +2692,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Fill", name) { args = new object[] { dims, value }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2636,6 +2781,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Fingerprint", name) { args = new object[] { data, method }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2717,6 +2866,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Gather", name) { args = new object[] { params_, indices }, attrs = new Dictionary() { ["validate_indices"] = validate_indices } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2877,6 +3030,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "GatherNd", name) { args = new object[] { params_, indices }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2961,6 +3118,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "GatherV2", name) { args = new object[] { params_, indices, axis }, attrs = new Dictionary() { ["batch_dims"] = batch_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3023,6 +3184,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "GuaranteeConst", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3072,6 +3237,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Identity", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3129,24 +3298,27 @@ public static class gen_array_ops /// /// /// - /// /// - public static Tensor identity_n(Tensor input, TF_DataType[] T, string? name = null) + public static Tensor[] identity_n(Tensors input, string? name = null) { var _ctx = tf.Context; if (_ctx.executing_eagerly()) { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityN", name) { args = new object[] { input }, attrs = new Dictionary() { ["T"] = T } }); - return _fast_path_result[0]; + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityN", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; } catch (Exception) { } try { - return identity_n_eager_fallback(input, T: T, name: name, ctx: _ctx); + return identity_n_eager_fallback(input, name: name, ctx: _ctx); } catch (Exception) { @@ -3154,7 +3326,6 @@ public static class gen_array_ops } Dictionary keywords = new(); keywords["input"] = input; - keywords["T"] = T; var _op = tf.OpDefLib._apply_op_helper("IdentityN", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) @@ -3162,19 +3333,19 @@ public static class gen_array_ops object[] _attrs = new object[] { "T", _op.get_attr("T") }; _execute.record_gradient("IdentityN", _op.inputs, _attrs, _result); } - return _result[0]; + return _result; } - public static Tensor identity_n_eager_fallback(Tensor input, TF_DataType[] T, string name, Context ctx) + public static Tensor[] identity_n_eager_fallback(Tensor input, string name, Context ctx) { Tensor[] _inputs_flat = new Tensor[] { input }; - object[] _attrs = new object[] { "T", T }; + object[] _attrs = new object[] { }; var _result = _execute.execute("IdentityN", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); if (_execute.must_record_gradient()) { _execute.record_gradient("IdentityN", _inputs_flat, _attrs, _result); } - return _result[0]; + return _result; } /// /// Returns immutable tensor from memory region. @@ -3211,6 +3382,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ImmutableConst", name) { args = new object[] { }, attrs = new Dictionary() { ["dtype"] = dtype, ["shape"] = shape, ["memory_region_name"] = memory_region_name } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3264,6 +3439,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InplaceAdd", name) { args = new object[] { x, i, v }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3317,6 +3496,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InplaceSub", name) { args = new object[] { x, i, v }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3370,6 +3553,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InplaceUpdate", name) { args = new object[] { x, i, v }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3440,6 +3627,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InvertPermutation", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3516,6 +3707,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ListDiff", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3590,6 +3785,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LowerBound", name) { args = new object[] { sorted_inputs, values }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3684,6 +3883,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixBandPart", name) { args = new object[] { input, num_lower, num_upper }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3765,6 +3968,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiag", name) { args = new object[] { diagonal }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3846,6 +4053,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagPart", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3969,6 +4180,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagPartV2", name) { args = new object[] { input, k, padding_value }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4136,6 +4351,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagPartV3", name) { args = new object[] { input, k, padding_value }, attrs = new Dictionary() { ["align"] = align } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4287,6 +4506,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagV2", name) { args = new object[] { diagonal, k, num_rows, num_cols, padding_value }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4475,6 +4698,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagV3", name) { args = new object[] { diagonal, k, num_rows, num_cols, padding_value }, attrs = new Dictionary() { ["align"] = align } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4550,6 +4777,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixSetDiag", name) { args = new object[] { input, diagonal }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4677,6 +4908,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixSetDiagV2", name) { args = new object[] { input, diagonal, k }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4849,6 +5084,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixSetDiagV3", name) { args = new object[] { input, diagonal, k }, attrs = new Dictionary() { ["align"] = align } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4944,6 +5183,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MirrorPad", name) { args = new object[] { input, paddings }, attrs = new Dictionary() { ["mode"] = mode } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5023,6 +5266,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MirrorPadGrad", name) { args = new object[] { input, paddings }, attrs = new Dictionary() { ["mode"] = mode } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5173,6 +5420,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "OneHot", name) { args = new object[] { indices, depth, on_value, off_value }, attrs = new Dictionary() { ["axis"] = axis } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5226,6 +5477,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "OnesLike", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5304,6 +5559,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Pack", name) { args = new object[] { values }, attrs = new Dictionary() { ["axis"] = axis } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5384,6 +5643,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Pad", name) { args = new object[] { input, paddings }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5464,6 +5727,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PadV2", name) { args = new object[] { input, paddings, constant_values }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5541,6 +5808,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ParallelConcat", name) { args = new object[] { values }, attrs = new Dictionary() { ["shape"] = shape } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5610,6 +5881,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Placeholder", name) { args = new object[] { }, attrs = new Dictionary() { ["dtype"] = dtype, ["shape"] = shape } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5677,6 +5952,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PlaceholderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["dtype"] = dtype, ["shape"] = shape } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5732,6 +6011,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PlaceholderWithDefault", name) { args = new object[] { input }, attrs = new Dictionary() { ["shape"] = shape } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5799,6 +6082,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PreventGradient", name) { args = new object[] { input }, attrs = new Dictionary() { ["message"] = message } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5858,6 +6145,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeAndDequantize", name) { args = new object[] { input }, attrs = new Dictionary() { ["signed_input"] = signed_input, ["num_bits"] = num_bits, ["range_given"] = range_given, ["input_min"] = input_min, ["input_max"] = input_max } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6011,6 +6302,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeAndDequantizeV2", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { ["signed_input"] = signed_input, ["num_bits"] = num_bits, ["range_given"] = range_given, ["round_mode"] = round_mode, ["narrow_range"] = narrow_range, ["axis"] = axis } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6085,6 +6380,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeAndDequantizeV3", name) { args = new object[] { input, input_min, input_max, num_bits }, attrs = new Dictionary() { ["signed_input"] = signed_input, ["range_given"] = range_given, ["narrow_range"] = narrow_range, ["axis"] = axis } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6190,6 +6489,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeAndDequantizeV4", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { ["signed_input"] = signed_input, ["num_bits"] = num_bits, ["range_given"] = range_given, ["round_mode"] = round_mode, ["narrow_range"] = narrow_range, ["axis"] = axis } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6387,6 +6690,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeV2", name) { args = new object[] { input, min_range, max_range }, attrs = new Dictionary() { ["T"] = T, ["mode"] = mode, ["round_mode"] = round_mode, ["narrow_range"] = narrow_range, ["axis"] = axis, ["ensure_minimum_range"] = ensure_minimum_range } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6455,6 +6762,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConcat", name) { args = new object[] { concat_dim, values, input_mins, input_maxes }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6541,6 +6852,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedInstanceNorm", name) { args = new object[] { x, x_min, x_max }, attrs = new Dictionary() { ["output_range_given"] = output_range_given, ["given_y_min"] = given_y_min, ["given_y_max"] = given_y_max, ["variance_epsilon"] = variance_epsilon, ["min_separation"] = min_separation } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6605,6 +6920,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedReshape", name) { args = new object[] { tensor, shape, input_min, input_max }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6674,6 +6993,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Rank", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6815,6 +7138,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Reshape", name) { args = new object[] { tensor, shape }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6884,6 +7211,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceStridedSliceAssign", name) { args = new object[] { ref_, begin, end, strides, value }, attrs = new Dictionary() { ["begin_mask"] = begin_mask, ["end_mask"] = end_mask, ["ellipsis_mask"] = ellipsis_mask, ["new_axis_mask"] = new_axis_mask, ["shrink_axis_mask"] = shrink_axis_mask } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6991,6 +7322,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Reverse", name) { args = new object[] { tensor, dims }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7110,6 +7445,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReverseSequence", name) { args = new object[] { input, seq_lengths }, attrs = new Dictionary() { ["seq_dim"] = seq_dim, ["batch_dim"] = batch_dim } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7210,6 +7549,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReverseV2", name) { args = new object[] { tensor, axis }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7352,6 +7695,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ScatterNd", name) { args = new object[] { indices, updates, shape }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7442,6 +7789,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ScatterNdNonAliasingAdd", name) { args = new object[] { input, indices, updates }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7506,6 +7857,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Shape", name) { args = new object[] { input }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7562,6 +7917,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ShapeN", name) { args = new object[] { input }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7628,6 +7987,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Size", name) { args = new object[] { input }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7690,6 +8053,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Slice", name) { args = new object[] { input, begin, size }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7741,6 +8108,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Snapshot", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7879,6 +8250,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SpaceToBatch", name) { args = new object[] { input, paddings }, attrs = new Dictionary() { ["block_size"] = block_size } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8048,6 +8423,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SpaceToBatchND", name) { args = new object[] { input, block_shape, paddings }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8192,6 +8571,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SpaceToDepth", name) { args = new object[] { input }, attrs = new Dictionary() { ["block_size"] = block_size, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8254,6 +8637,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Split", name) { args = new object[] { split_dim, value }, attrs = new Dictionary() { ["num_split"] = num_split } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8308,6 +8695,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SplitV", name) { args = new object[] { value, size_splits, split_dim }, attrs = new Dictionary() { ["num_split"] = num_split } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8393,6 +8784,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Squeeze", name) { args = new object[] { input }, attrs = new Dictionary() { ["squeeze_dims"] = squeeze_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8504,6 +8899,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StopGradient", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8689,6 +9088,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StridedSlice", name) { args = new object[] { input, begin, end, strides }, attrs = new Dictionary() { ["begin_mask"] = begin_mask, ["end_mask"] = end_mask, ["ellipsis_mask"] = ellipsis_mask, ["new_axis_mask"] = new_axis_mask, ["shrink_axis_mask"] = shrink_axis_mask } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8823,6 +9226,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StridedSliceGrad", name) { args = new object[] { shape, begin, end, strides, dy }, attrs = new Dictionary() { ["begin_mask"] = begin_mask, ["end_mask"] = end_mask, ["ellipsis_mask"] = ellipsis_mask, ["new_axis_mask"] = new_axis_mask, ["shrink_axis_mask"] = shrink_axis_mask } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8946,6 +9353,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterAdd", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9013,6 +9424,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterMax", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9066,6 +9481,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterMin", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9185,6 +9604,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterSub", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9278,6 +9701,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterUpdate", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9348,6 +9775,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorStridedSliceUpdate", name) { args = new object[] { input, begin, end, strides, value }, attrs = new Dictionary() { ["begin_mask"] = begin_mask, ["end_mask"] = end_mask, ["ellipsis_mask"] = ellipsis_mask, ["new_axis_mask"] = new_axis_mask, ["shrink_axis_mask"] = shrink_axis_mask } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9437,6 +9868,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Tile", name) { args = new object[] { input, multiples }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9495,6 +9930,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TileGrad", name) { args = new object[] { input, multiples }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9552,6 +9991,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Transpose", name) { args = new object[] { x, perm }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9629,6 +10072,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Unique", name) { args = new object[] { x }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9728,6 +10175,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UniqueV2", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9801,6 +10252,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UniqueWithCounts", name) { args = new object[] { x }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9904,6 +10359,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UniqueWithCountsV2", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9978,6 +10437,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Unpack", name) { args = new object[] { value }, attrs = new Dictionary() { ["num"] = num, ["axis"] = axis } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -10054,6 +10517,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnravelIndex", name) { args = new object[] { indices, dims }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -10127,6 +10594,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UpperBound", name) { args = new object[] { sorted_inputs, values }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -10241,6 +10712,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Where", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -10290,6 +10765,10 @@ public static class gen_array_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ZerosLike", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } diff --git a/src/TensorFlowNET.Core/Operations/gen_functional_ops.cs b/src/TensorFlowNET.Core/Operations/gen_functional_ops.cs index e1cf1c13..6ec426f5 100644 --- a/src/TensorFlowNET.Core/Operations/gen_functional_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_functional_ops.cs @@ -2,6 +2,7 @@ using Tensorflow.Eager; using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; namespace Tensorflow; @@ -54,6 +55,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Case", name) { args = new object[] { branch_index, input }, attrs = new Dictionary() { ["Tout"] = Tout, ["branches"] = branches, ["output_shapes"] = output_shapes } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -115,6 +120,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DeviceIndex", name) { args = new object[] { }, attrs = new Dictionary() { ["device_names"] = device_names } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -172,6 +181,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeParam", name) { args = new object[] { }, attrs = new Dictionary() { ["dtype"] = dtype, ["shape"] = shape } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -240,6 +253,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "For", name) { args = new object[] { start, limit, delta, input }, attrs = new Dictionary() { ["body"] = body } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -310,6 +327,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "If", name) { args = new object[] { cond, input }, attrs = new Dictionary() { ["Tout"] = Tout, ["then_branch"] = then_branch, ["else_branch"] = else_branch, ["output_shapes"] = output_shapes } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -385,6 +406,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PartitionedCall", name) { args = new object[] { args }, attrs = new Dictionary() { ["Tout"] = Tout, ["f"] = f, ["config"] = config, ["config_proto"] = config_proto, ["executor_type"] = executor_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -462,6 +487,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RemoteCall", name) { args = new object[] { target, args }, attrs = new Dictionary() { ["Tout"] = Tout, ["f"] = f } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -529,6 +558,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StatefulPartitionedCall", name) { args = new object[] { args }, attrs = new Dictionary() { ["Tout"] = Tout, ["f"] = f, ["config"] = config, ["config_proto"] = config_proto, ["executor_type"] = executor_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -628,6 +661,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StatelessCase", name) { args = new object[] { branch_index, input }, attrs = new Dictionary() { ["Tout"] = Tout, ["branches"] = branches, ["output_shapes"] = output_shapes } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -698,6 +735,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StatelessIf", name) { args = new object[] { cond, input }, attrs = new Dictionary() { ["Tout"] = Tout, ["then_branch"] = then_branch, ["else_branch"] = else_branch, ["output_shapes"] = output_shapes } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -775,6 +816,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StatelessWhile", name) { args = new object[] { input }, attrs = new Dictionary() { ["cond"] = cond, ["body"] = body, ["output_shapes"] = output_shapes, ["parallel_iterations"] = parallel_iterations } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -855,6 +900,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SymbolicGradient", name) { args = new object[] { input }, attrs = new Dictionary() { ["Tout"] = Tout, ["f"] = f } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -922,6 +971,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ToBool", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -991,6 +1044,10 @@ public static class gen_functional_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "While", name) { args = new object[] { input }, attrs = new Dictionary() { ["cond"] = cond, ["body"] = body, ["output_shapes"] = output_shapes, ["parallel_iterations"] = parallel_iterations } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } diff --git a/src/TensorFlowNET.Core/Operations/gen_io_ops.cs b/src/TensorFlowNET.Core/Operations/gen_io_ops.cs index 490cb188..0b92ff36 100644 --- a/src/TensorFlowNET.Core/Operations/gen_io_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_io_ops.cs @@ -2,12 +2,50 @@ using Tensorflow.Eager; using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; namespace Tensorflow; -internal static class gen_io_ops +public static class gen_io_ops { + /// + /// A Reader that outputs fixed-length records from a file. + /// + /// + /// + /// Number of bytes in the header, defaults to 0. + /// + /// + /// + /// + /// Number of bytes in the record. + /// + /// + /// + /// + /// Number of bytes in the footer, defaults to 0. + /// + /// + /// + /// + /// Number of bytes to hop before each read. Default of 0 means using + /// record_bytes. + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// public static Tensor fixed_length_record_reader(int header_bytes = 0, int record_bytes = 0, int footer_bytes = 0, int hop_bytes = 0, string container = "", string shared_name = "", string? name = null) { var _ctx = tf.Context; @@ -15,9 +53,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FixedLengthRecordReader", name, "header_bytes", header_bytes, "record_bytes", record_bytes, "footer_bytes", footer_bytes, "hop_bytes", hop_bytes, "container", container, "shared_name", shared_name)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FixedLengthRecordReader", name) { args = new object[] { }, attrs = new Dictionary() { ["header_bytes"] = header_bytes, ["record_bytes"] = record_bytes, ["footer_bytes"] = footer_bytes, ["hop_bytes"] = hop_bytes, ["container"] = container, ["shared_name"] = shared_name } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -29,8 +71,22 @@ internal static class gen_io_ops { } } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } Dictionary keywords = new(); - keywords["header_bytes"] = header_bytes; keywords["record_bytes"] = record_bytes; keywords["footer_bytes"] = footer_bytes; keywords["hop_bytes"] = hop_bytes; keywords["container"] = container; keywords["shared_name"] = shared_name; var _op = tf.OpDefLib._apply_op_helper("FixedLengthRecordReader", name, keywords); + keywords["header_bytes"] = header_bytes; + keywords["record_bytes"] = record_bytes; + keywords["footer_bytes"] = footer_bytes; + keywords["hop_bytes"] = hop_bytes; + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("FixedLengthRecordReader", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -51,6 +107,49 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// A Reader that outputs fixed-length records from a file. + /// + /// + /// + /// Number of bytes in the header, defaults to 0. + /// + /// + /// + /// + /// Number of bytes in the record. + /// + /// + /// + /// + /// Number of bytes in the footer, defaults to 0. + /// + /// + /// + /// + /// Number of bytes to hop before each read. Default of 0 means using + /// record_bytes. + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + /// + /// The type of encoding for the file. Currently ZLIB and GZIP + /// are supported. Defaults to none. + /// + /// + /// public static Tensor fixed_length_record_reader_v2(int header_bytes = 0, int record_bytes = 0, int footer_bytes = 0, int hop_bytes = 0, string container = "", string shared_name = "", string encoding = "", string? name = null) { var _ctx = tf.Context; @@ -58,9 +157,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FixedLengthRecordReaderV2", name, "header_bytes", header_bytes, "record_bytes", record_bytes, "footer_bytes", footer_bytes, "hop_bytes", hop_bytes, "container", container, "shared_name", shared_name, "encoding", encoding)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FixedLengthRecordReaderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["header_bytes"] = header_bytes, ["record_bytes"] = record_bytes, ["footer_bytes"] = footer_bytes, ["hop_bytes"] = hop_bytes, ["container"] = container, ["shared_name"] = shared_name, ["encoding"] = encoding } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -72,8 +175,27 @@ internal static class gen_io_ops { } } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + if (encoding is null) + { + encoding = ""; + } Dictionary keywords = new(); - keywords["header_bytes"] = header_bytes; keywords["record_bytes"] = record_bytes; keywords["footer_bytes"] = footer_bytes; keywords["hop_bytes"] = hop_bytes; keywords["container"] = container; keywords["shared_name"] = shared_name; keywords["encoding"] = encoding; var _op = tf.OpDefLib._apply_op_helper("FixedLengthRecordReaderV2", name, keywords); + keywords["header_bytes"] = header_bytes; + keywords["record_bytes"] = record_bytes; + keywords["footer_bytes"] = footer_bytes; + keywords["hop_bytes"] = hop_bytes; + keywords["container"] = container; + keywords["shared_name"] = shared_name; + keywords["encoding"] = encoding; + var _op = tf.OpDefLib._apply_op_helper("FixedLengthRecordReaderV2", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -94,6 +216,28 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// A Reader that outputs the queued work as both the key and value. + /// + /// + /// + /// To use, enqueue strings in a Queue. ReaderRead will take the front + /// work string and output (work, work). + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// public static Tensor identity_reader(string container = "", string shared_name = "", string? name = null) { var _ctx = tf.Context; @@ -101,9 +245,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityReader", name, "container", container, "shared_name", shared_name)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityReader", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -115,8 +263,18 @@ internal static class gen_io_ops { } } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } Dictionary keywords = new(); - keywords["container"] = container; keywords["shared_name"] = shared_name; var _op = tf.OpDefLib._apply_op_helper("IdentityReader", name, keywords); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("IdentityReader", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -137,6 +295,28 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// A Reader that outputs the queued work as both the key and value. + /// + /// + /// + /// To use, enqueue strings in a Queue. ReaderRead will take the front + /// work string and output (work, work). + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// public static Tensor identity_reader_v2(string container = "", string shared_name = "", string? name = null) { var _ctx = tf.Context; @@ -144,9 +324,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityReaderV2", name, "container", container, "shared_name", shared_name)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityReaderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -158,8 +342,18 @@ internal static class gen_io_ops { } } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } Dictionary keywords = new(); - keywords["container"] = container; keywords["shared_name"] = shared_name; var _op = tf.OpDefLib._apply_op_helper("IdentityReaderV2", name, keywords); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("IdentityReaderV2", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -180,6 +374,18 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// Returns the set of files matching one or more glob patterns. + /// + /// + /// + /// Note that this routine only supports wildcard characters in the + /// basename portion of the pattern, not in the directory portion. + /// Note also that the order of filenames returned is deterministic. + /// + /// + /// + /// public static Tensor matching_files(Tensor pattern, string? name = null) { var _ctx = tf.Context; @@ -187,9 +393,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatchingFiles", name, pattern)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatchingFiles", name) { args = new object[] { pattern }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -224,51 +434,11 @@ internal static class gen_io_ops } return _result[0]; } - public static Operation merge_v2_checkpoints(Tensor checkpoint_prefixes, Tensor destination_prefix, bool delete_old_dirs = true, bool allow_missing_files = false, string? name = null) - { - var _ctx = tf.Context; - if (_ctx.executing_eagerly()) - { - try - { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MergeV2Checkpoints", name, checkpoint_prefixes, destination_prefix, "delete_old_dirs", delete_old_dirs, "allow_missing_files", allow_missing_files)); - return null; - } - catch (Exception) - { - } - try - { - return merge_v2_checkpoints_eager_fallback(checkpoint_prefixes, destination_prefix, delete_old_dirs: delete_old_dirs, allow_missing_files: allow_missing_files, name: name, ctx: _ctx); - } - catch (Exception) - { - } - } - Dictionary keywords = new(); - keywords["checkpoint_prefixes"] = checkpoint_prefixes; - keywords["destination_prefix"] = destination_prefix; - keywords["delete_old_dirs"] = delete_old_dirs; keywords["allow_missing_files"] = allow_missing_files; var _op = tf.OpDefLib._apply_op_helper("MergeV2Checkpoints", name, keywords); - var _result = _op.outputs; - if (_execute.must_record_gradient()) - { - object[] _attrs = new object[] { "delete_old_dirs", _op._get_attr_bool("delete_old_dirs"), "allow_missing_files", _op._get_attr_bool("allow_missing_files") }; - _execute.record_gradient("MergeV2Checkpoints", _op.inputs, _attrs, _result); - } - return _op; - } - - public static Tensor merge_v2_checkpoints_eager_fallback(Tensor checkpoint_prefixes, Tensor destination_prefix, bool delete_old_dirs, bool allow_missing_files, string name, Context ctx) - { - Tensor[] _inputs_flat = new Tensor[] { checkpoint_prefixes, destination_prefix }; - object[] _attrs = new object[] { "delete_old_dirs", delete_old_dirs, "allow_missing_files", allow_missing_files }; - var _result = _execute.execute("MergeV2Checkpoints", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); - if (_execute.must_record_gradient()) - { - _execute.record_gradient("MergeV2Checkpoints", _inputs_flat, _attrs, _result); - } - return null; - } + /// + /// Reads and outputs the entire contents of the input filename. + /// + /// + /// public static Tensor read_file(Tensor filename, string? name = null) { var _ctx = tf.Context; @@ -276,9 +446,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReadFile", name, filename)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReadFile", name) { args = new object[] { filename }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -313,6 +487,17 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// Returns the number of records this Reader has produced. + /// + /// + /// + /// This is the same as the number of ReaderRead executions that have + /// succeeded. + /// + /// + /// + /// public static Tensor reader_num_records_produced(Tensor reader_handle, string? name = null) { var _ctx = tf.Context; @@ -336,6 +521,17 @@ internal static class gen_io_ops { throw new RuntimeError($"reader_num_records_produced op does not support eager execution. Arg 'reader_handle' is a ref."); } + /// + /// Returns the number of records this Reader has produced. + /// + /// + /// + /// This is the same as the number of ReaderRead executions that have + /// succeeded. + /// + /// + /// + /// public static Tensor reader_num_records_produced_v2(Tensor reader_handle, string? name = null) { var _ctx = tf.Context; @@ -343,9 +539,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderNumRecordsProducedV2", name, reader_handle)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderNumRecordsProducedV2", name) { args = new object[] { reader_handle }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -380,6 +580,11 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// Returns the number of work units this Reader has finished processing. + /// + /// + /// public static Tensor reader_num_work_units_completed(Tensor reader_handle, string? name = null) { var _ctx = tf.Context; @@ -403,6 +608,11 @@ internal static class gen_io_ops { throw new RuntimeError($"reader_num_work_units_completed op does not support eager execution. Arg 'reader_handle' is a ref."); } + /// + /// Returns the number of work units this Reader has finished processing. + /// + /// + /// public static Tensor reader_num_work_units_completed_v2(Tensor reader_handle, string? name = null) { var _ctx = tf.Context; @@ -410,9 +620,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderNumWorkUnitsCompletedV2", name, reader_handle)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderNumWorkUnitsCompletedV2", name) { args = new object[] { reader_handle }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -447,6 +661,19 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// Returns the next record (key, value pair) produced by a Reader. + /// + /// + /// + /// Will dequeue from the input queue if necessary (e.g. when the + /// Reader needs to start reading from a new file since it has finished + /// with the previous file). + /// + /// + /// + /// + /// public static Tensor[] reader_read(Tensor reader_handle, Tensor queue_handle, string? name = null) { var _ctx = tf.Context; @@ -471,6 +698,21 @@ internal static class gen_io_ops { throw new RuntimeError($"reader_read op does not support eager execution. Arg 'reader_handle' is a ref."); } + /// + /// Returns up to `num_records` (key, value) pairs produced by a Reader. + /// + /// + /// + /// Will dequeue from the input queue if necessary (e.g. when the + /// Reader needs to start reading from a new file since it has finished + /// with the previous file). + /// It may return less than `num_records` even before the last batch. + /// + /// + /// + /// + /// + /// public static Tensor[] reader_read_up_to(Tensor reader_handle, Tensor queue_handle, Tensor num_records, string? name = null) { var _ctx = tf.Context; @@ -496,6 +738,21 @@ internal static class gen_io_ops { throw new RuntimeError($"reader_read_up_to op does not support eager execution. Arg 'reader_handle' is a ref."); } + /// + /// Returns up to `num_records` (key, value) pairs produced by a Reader. + /// + /// + /// + /// Will dequeue from the input queue if necessary (e.g. when the + /// Reader needs to start reading from a new file since it has finished + /// with the previous file). + /// It may return less than `num_records` even before the last batch. + /// + /// + /// + /// + /// + /// public static Tensor[] reader_read_up_to_v2(Tensor reader_handle, Tensor queue_handle, Tensor num_records, string? name = null) { var _ctx = tf.Context; @@ -503,9 +760,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderReadUpToV2", name, reader_handle, queue_handle, num_records)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderReadUpToV2", name) { args = new object[] { reader_handle, queue_handle, num_records }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -542,6 +803,19 @@ internal static class gen_io_ops } return _result; } + /// + /// Returns the next record (key, value pair) produced by a Reader. + /// + /// + /// + /// Will dequeue from the input queue if necessary (e.g. when the + /// Reader needs to start reading from a new file since it has finished + /// with the previous file). + /// + /// + /// + /// + /// public static Tensor[] reader_read_v2(Tensor reader_handle, Tensor queue_handle, string? name = null) { var _ctx = tf.Context; @@ -549,9 +823,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderReadV2", name, reader_handle, queue_handle)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderReadV2", name) { args = new object[] { reader_handle, queue_handle }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -587,6 +865,11 @@ internal static class gen_io_ops } return _result; } + /// + /// Restore a Reader to its initial clean state. + /// + /// + /// public static Operation reader_reset(Tensor reader_handle, string? name = null) { var _ctx = tf.Context; @@ -606,10 +889,15 @@ internal static class gen_io_ops return _op; } - public static Tensor reader_reset_eager_fallback(Tensor reader_handle, string name, Context ctx) + public static Operation reader_reset_eager_fallback(Tensor reader_handle, string name, Context ctx) { throw new RuntimeError($"reader_reset op does not support eager execution. Arg 'reader_handle' is a ref."); } + /// + /// Restore a Reader to its initial clean state. + /// + /// + /// public static Operation reader_reset_v2(Tensor reader_handle, string? name = null) { var _ctx = tf.Context; @@ -617,9 +905,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderResetV2", name, reader_handle)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderResetV2", name) { args = new object[] { reader_handle }, attrs = new Dictionary() { } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -643,7 +935,7 @@ internal static class gen_io_ops return _op; } - public static Tensor reader_reset_v2_eager_fallback(Tensor reader_handle, string name, Context ctx) + public static Operation reader_reset_v2_eager_fallback(Tensor reader_handle, string name, Context ctx) { Tensor[] _inputs_flat = new Tensor[] { reader_handle }; object[] _attrs = new object[] { }; @@ -654,6 +946,18 @@ internal static class gen_io_ops } return null; } + /// + /// Restore a reader to a previously saved state. + /// + /// + /// + /// Not all Readers support being restored, so this can produce an + /// Unimplemented error. + /// + /// + /// + /// + /// public static Operation reader_restore_state(Tensor reader_handle, Tensor state, string? name = null) { var _ctx = tf.Context; @@ -674,10 +978,22 @@ internal static class gen_io_ops return _op; } - public static Tensor reader_restore_state_eager_fallback(Tensor reader_handle, Tensor state, string name, Context ctx) + public static Operation reader_restore_state_eager_fallback(Tensor reader_handle, Tensor state, string name, Context ctx) { throw new RuntimeError($"reader_restore_state op does not support eager execution. Arg 'reader_handle' is a ref."); } + /// + /// Restore a reader to a previously saved state. + /// + /// + /// + /// Not all Readers support being restored, so this can produce an + /// Unimplemented error. + /// + /// + /// + /// + /// public static Operation reader_restore_state_v2(Tensor reader_handle, Tensor state, string? name = null) { var _ctx = tf.Context; @@ -685,9 +1001,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderRestoreStateV2", name, reader_handle, state)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderRestoreStateV2", name) { args = new object[] { reader_handle, state }, attrs = new Dictionary() { } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -712,7 +1032,7 @@ internal static class gen_io_ops return _op; } - public static Tensor reader_restore_state_v2_eager_fallback(Tensor reader_handle, Tensor state, string name, Context ctx) + public static Operation reader_restore_state_v2_eager_fallback(Tensor reader_handle, Tensor state, string name, Context ctx) { Tensor[] _inputs_flat = new Tensor[] { reader_handle, state }; object[] _attrs = new object[] { }; @@ -723,6 +1043,17 @@ internal static class gen_io_ops } return null; } + /// + /// Produce a string tensor that encodes the state of a Reader. + /// + /// + /// + /// Not all Readers support being serialized, so this can produce an + /// Unimplemented error. + /// + /// + /// + /// public static Tensor reader_serialize_state(Tensor reader_handle, string? name = null) { var _ctx = tf.Context; @@ -746,6 +1077,17 @@ internal static class gen_io_ops { throw new RuntimeError($"reader_serialize_state op does not support eager execution. Arg 'reader_handle' is a ref."); } + /// + /// Produce a string tensor that encodes the state of a Reader. + /// + /// + /// + /// Not all Readers support being serialized, so this can produce an + /// Unimplemented error. + /// + /// + /// + /// public static Tensor reader_serialize_state_v2(Tensor reader_handle, string? name = null) { var _ctx = tf.Context; @@ -753,9 +1095,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderSerializeStateV2", name, reader_handle)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderSerializeStateV2", name) { args = new object[] { reader_handle }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -790,6 +1136,43 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// Restores a tensor from checkpoint files. + /// + /// + /// + /// Reads a tensor stored in one or several files. If there are several files (for + /// instance because a tensor was saved as slices), `file_pattern` may contain + /// wildcard symbols (`*` and `?`) in the filename portion only, not in the + /// directory portion. + /// + /// If a `file_pattern` matches several files, `preferred_shard` can be used to hint + /// in which file the requested tensor is likely to be found. This op will first + /// open the file at index `preferred_shard` in the list of matching files and try + /// to restore tensors from that file. Only if some tensors or tensor slices are + /// not found in that first file, then the Op opens all the files. Setting + /// `preferred_shard` to match the value passed as the `shard` input + /// of a matching `Save` Op may speed up Restore. This attribute only affects + /// performance, not correctness. The default value -1 means files are processed in + /// order. + /// + /// See also `RestoreSlice`. + /// + /// + /// + /// + /// + /// + /// The type of the tensor to be restored. + /// + /// + /// + /// + /// Index of file to open first if multiple files match + /// `file_pattern`. + /// + /// + /// public static Tensor restore(Tensor file_pattern, Tensor tensor_name, TF_DataType dt, int preferred_shard = -1, string? name = null) { var _ctx = tf.Context; @@ -797,9 +1180,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Restore", name, file_pattern, tensor_name, "dt", dt, "preferred_shard", preferred_shard)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Restore", name) { args = new object[] { file_pattern, tensor_name }, attrs = new Dictionary() { ["dt"] = dt, ["preferred_shard"] = preferred_shard } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -814,7 +1201,9 @@ internal static class gen_io_ops Dictionary keywords = new(); keywords["file_pattern"] = file_pattern; keywords["tensor_name"] = tensor_name; - keywords["dt"] = dt; keywords["preferred_shard"] = preferred_shard; var _op = tf.OpDefLib._apply_op_helper("Restore", name, keywords); + keywords["dt"] = dt; + keywords["preferred_shard"] = preferred_shard; + var _op = tf.OpDefLib._apply_op_helper("Restore", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -835,6 +1224,34 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// Restores a tensor from checkpoint files. + /// + /// + /// + /// This is like `Restore` except that restored tensor can be listed as filling + /// only a slice of a larger tensor. `shape_and_slice` specifies the shape of the + /// larger tensor and the slice that the restored tensor covers. + /// + /// The `shape_and_slice` input has the same format as the + /// elements of the `shapes_and_slices` input of the `SaveSlices` op. + /// + /// + /// + /// + /// + /// + /// + /// The type of the tensor to be restored. + /// + /// + /// + /// + /// Index of file to open first if multiple files match + /// `file_pattern`. See the documentation for `Restore`. + /// + /// + /// public static Tensor restore_slice(Tensor file_pattern, Tensor tensor_name, Tensor shape_and_slice, TF_DataType dt, int preferred_shard = -1, string? name = null) { var _ctx = tf.Context; @@ -842,9 +1259,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RestoreSlice", name, file_pattern, tensor_name, shape_and_slice, "dt", dt, "preferred_shard", preferred_shard)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RestoreSlice", name) { args = new object[] { file_pattern, tensor_name, shape_and_slice }, attrs = new Dictionary() { ["dt"] = dt, ["preferred_shard"] = preferred_shard } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -860,7 +1281,9 @@ internal static class gen_io_ops keywords["file_pattern"] = file_pattern; keywords["tensor_name"] = tensor_name; keywords["shape_and_slice"] = shape_and_slice; - keywords["dt"] = dt; keywords["preferred_shard"] = preferred_shard; var _op = tf.OpDefLib._apply_op_helper("RestoreSlice", name, keywords); + keywords["dt"] = dt; + keywords["preferred_shard"] = preferred_shard; + var _op = tf.OpDefLib._apply_op_helper("RestoreSlice", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -881,15 +1304,49 @@ internal static class gen_io_ops } return _result[0]; } - public static Tensor restore_v2(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, TF_DataType[] dtypes, string? name = null) + /// + /// Restores tensors from a V2 checkpoint. + /// + /// + /// + /// For backward compatibility with the V1 format, this Op currently allows + /// restoring from a V1 checkpoint as well: + /// - This Op first attempts to find the V2 index file pointed to by "prefix", and + /// if found proceed to read it as a V2 checkpoint; + /// - Otherwise the V1 read path is invoked. + /// Relying on this behavior is not recommended, as the ability to fall back to read + /// V1 might be deprecated and eventually removed. + /// + /// By default, restores the named tensors in full. If the caller wishes to restore + /// specific slices of stored tensors, "shape_and_slices" should be non-empty + /// strings and correspondingly well-formed. + /// + /// Callers must ensure all the named tensors are indeed stored in the checkpoint. + /// + /// + /// + /// + /// + /// + /// + /// shape {N}. The list of expected dtype for the tensors. Must match + /// those stored in the checkpoint. + /// + /// + /// + public static Tensor[] restore_v2(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, TF_DataType[] dtypes, string? name = null) { var _ctx = tf.Context; if (_ctx.executing_eagerly()) { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RestoreV2", name, prefix, tensor_names, shape_and_slices, "dtypes", dtypes)); - return _fast_path_result[0]; + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RestoreV2", name) { args = new object[] { prefix, tensor_names, shape_and_slices }, attrs = new Dictionary() { ["dtypes"] = dtypes } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; } catch (Exception) { @@ -906,43 +1363,63 @@ internal static class gen_io_ops keywords["prefix"] = prefix; keywords["tensor_names"] = tensor_names; keywords["shape_and_slices"] = shape_and_slices; - keywords["dtypes"] = dtypes; var _op = tf.OpDefLib._apply_op_helper("RestoreV2", name, keywords); + keywords["dtypes"] = dtypes; + var _op = tf.OpDefLib._apply_op_helper("RestoreV2", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { object[] _attrs = new object[] { "dtypes", _op.get_attr("dtypes") }; _execute.record_gradient("RestoreV2", _op.inputs, _attrs, _result); } - return _result[0]; + return _result; } - public static Tensor restore_v2_eager_fallback(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, TF_DataType[] dtypes, string name, Context ctx) + public static Tensor[] restore_v2_eager_fallback(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, TF_DataType[] dtypes, string name, Context ctx) { Tensor[] _inputs_flat = new Tensor[] { prefix, tensor_names, shape_and_slices }; - object[] _attrs = new object[] { "dtypes", dtypes }; + object[] _attrs = new object[] { }; var _result = _execute.execute("RestoreV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); if (_execute.must_record_gradient()) { _execute.record_gradient("RestoreV2", _inputs_flat, _attrs, _result); } - return _result[0]; + return _result; } - public static Operation save(Tensor filename, Tensor tensor_names, Tensor data, TF_DataType[] T, string? name = null) + /// + /// Saves the input tensors to disk. + /// + /// + /// + /// The size of `tensor_names` must match the number of tensors in `data`. `data[i]` + /// is written to `filename` with name `tensor_names[i]`. + /// + /// See also `SaveSlices`. + /// + /// + /// + /// + /// + /// + public static Operation save(Tensor filename, Tensor tensor_names, Tensors data, string? name = null) { var _ctx = tf.Context; if (_ctx.executing_eagerly()) { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Save", name, filename, tensor_names, data, "T", T)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Save", name) { args = new object[] { filename, tensor_names, data }, attrs = new Dictionary() { } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } try { - return save_eager_fallback(filename, tensor_names, data, T: T, name: name, ctx: _ctx); + return save_eager_fallback(filename, tensor_names, data, name: name, ctx: _ctx); } catch (Exception) { @@ -952,7 +1429,7 @@ internal static class gen_io_ops keywords["filename"] = filename; keywords["tensor_names"] = tensor_names; keywords["data"] = data; - keywords["T"] = T; var _op = tf.OpDefLib._apply_op_helper("Save", name, keywords); + var _op = tf.OpDefLib._apply_op_helper("Save", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -962,10 +1439,10 @@ internal static class gen_io_ops return _op; } - public static Tensor save_eager_fallback(Tensor filename, Tensor tensor_names, Tensor data, TF_DataType[] T, string name, Context ctx) + public static Operation save_eager_fallback(Tensor filename, Tensor tensor_names, Tensor data, string name, Context ctx) { Tensor[] _inputs_flat = new Tensor[] { filename, tensor_names, data }; - object[] _attrs = new object[] { "T", T }; + object[] _attrs = new object[] { }; var _result = _execute.execute("Save", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); if (_execute.must_record_gradient()) { @@ -973,22 +1450,59 @@ internal static class gen_io_ops } return null; } - public static Operation save_slices(Tensor filename, Tensor tensor_names, Tensor shapes_and_slices, Tensor data, TF_DataType[] T, string? name = null) + /// + /// Saves input tensors slices to disk. + /// + /// + /// + /// This is like `Save` except that tensors can be listed in the saved file as being + /// a slice of a larger tensor. `shapes_and_slices` specifies the shape of the + /// larger tensor and the slice that this tensor covers. `shapes_and_slices` must + /// have as many elements as `tensor_names`. + /// + /// Elements of the `shapes_and_slices` input must either be: + /// + /// * The empty string, in which case the corresponding tensor is + /// saved normally. + /// * A string of the form `dim0 dim1 ... dimN-1 slice-spec` where the + /// `dimI` are the dimensions of the larger tensor and `slice-spec` + /// specifies what part is covered by the tensor to save. + /// + /// `slice-spec` itself is a `:`-separated list: `slice0:slice1:...:sliceN-1` + /// where each `sliceI` is either: + /// + /// * The string `-` meaning that the slice covers all indices of this dimension + /// * `start,length` where `start` and `length` are integers. In that + /// case the slice covers `length` indices starting at `start`. + /// + /// See also `Save`. + /// + /// + /// + /// + /// + /// + /// + public static Operation save_slices(Tensor filename, Tensor tensor_names, Tensor shapes_and_slices, Tensors data, string? name = null) { var _ctx = tf.Context; if (_ctx.executing_eagerly()) { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SaveSlices", name, filename, tensor_names, shapes_and_slices, data, "T", T)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SaveSlices", name) { args = new object[] { filename, tensor_names, shapes_and_slices, data }, attrs = new Dictionary() { } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } try { - return save_slices_eager_fallback(filename, tensor_names, shapes_and_slices, data, T: T, name: name, ctx: _ctx); + return save_slices_eager_fallback(filename, tensor_names, shapes_and_slices, data, name: name, ctx: _ctx); } catch (Exception) { @@ -999,7 +1513,7 @@ internal static class gen_io_ops keywords["tensor_names"] = tensor_names; keywords["shapes_and_slices"] = shapes_and_slices; keywords["data"] = data; - keywords["T"] = T; var _op = tf.OpDefLib._apply_op_helper("SaveSlices", name, keywords); + var _op = tf.OpDefLib._apply_op_helper("SaveSlices", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -1009,10 +1523,10 @@ internal static class gen_io_ops return _op; } - public static Tensor save_slices_eager_fallback(Tensor filename, Tensor tensor_names, Tensor shapes_and_slices, Tensor data, TF_DataType[] T, string name, Context ctx) + public static Operation save_slices_eager_fallback(Tensor filename, Tensor tensor_names, Tensor shapes_and_slices, Tensor data, string name, Context ctx) { Tensor[] _inputs_flat = new Tensor[] { filename, tensor_names, shapes_and_slices, data }; - object[] _attrs = new object[] { "T", T }; + object[] _attrs = new object[] { }; var _result = _execute.execute("SaveSlices", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); if (_execute.must_record_gradient()) { @@ -1020,22 +1534,41 @@ internal static class gen_io_ops } return null; } - public static Operation save_v2(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, Tensor tensors, TF_DataType[] dtypes, string? name = null) + /// + /// Saves tensors in V2 checkpoint format. + /// + /// + /// + /// By default, saves the named tensors in full. If the caller wishes to save + /// specific slices of full tensors, "shape_and_slices" should be non-empty strings + /// and correspondingly well-formed. + /// + /// + /// + /// + /// + /// + /// + public static Operation save_v2(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, Tensors tensors, string? name = null) { var _ctx = tf.Context; if (_ctx.executing_eagerly()) { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SaveV2", name, prefix, tensor_names, shape_and_slices, tensors, "dtypes", dtypes)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SaveV2", name) { args = new object[] { prefix, tensor_names, shape_and_slices, tensors }, attrs = new Dictionary() { } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } try { - return save_v2_eager_fallback(prefix, tensor_names, shape_and_slices, tensors, dtypes: dtypes, name: name, ctx: _ctx); + return save_v2_eager_fallback(prefix, tensor_names, shape_and_slices, tensors, name: name, ctx: _ctx); } catch (Exception) { @@ -1046,7 +1579,7 @@ internal static class gen_io_ops keywords["tensor_names"] = tensor_names; keywords["shape_and_slices"] = shape_and_slices; keywords["tensors"] = tensors; - keywords["dtypes"] = dtypes; var _op = tf.OpDefLib._apply_op_helper("SaveV2", name, keywords); + var _op = tf.OpDefLib._apply_op_helper("SaveV2", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -1056,10 +1589,10 @@ internal static class gen_io_ops return _op; } - public static Tensor save_v2_eager_fallback(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, Tensor tensors, TF_DataType[] dtypes, string name, Context ctx) + public static Operation save_v2_eager_fallback(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, Tensor tensors, string name, Context ctx) { Tensor[] _inputs_flat = new Tensor[] { prefix, tensor_names, shape_and_slices, tensors }; - object[] _attrs = new object[] { "dtypes", dtypes }; + object[] _attrs = new object[] { }; var _result = _execute.execute("SaveV2", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); if (_execute.must_record_gradient()) { @@ -1067,6 +1600,18 @@ internal static class gen_io_ops } return null; } + /// + /// Generate a sharded filename. The filename is printf formatted as + /// + /// + /// + /// %s-%05d-of-%05d, basename, shard, num_shards. + /// + /// + /// + /// + /// + /// public static Tensor sharded_filename(Tensor basename, Tensor shard, Tensor num_shards, string? name = null) { var _ctx = tf.Context; @@ -1074,9 +1619,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ShardedFilename", name, basename, shard, num_shards)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ShardedFilename", name) { args = new object[] { basename, shard, num_shards }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1113,6 +1662,12 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// Generate a glob pattern matching all sharded file names. + /// + /// + /// + /// public static Tensor sharded_filespec(Tensor basename, Tensor num_shards, string? name = null) { var _ctx = tf.Context; @@ -1120,9 +1675,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ShardedFilespec", name, basename, num_shards)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ShardedFilespec", name) { args = new object[] { basename, num_shards }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1158,6 +1717,27 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// A Reader that outputs the lines of a file delimited by '\n'. + /// + /// + /// + /// Number of lines to skip from the beginning of every file. + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// public static Tensor text_line_reader(int skip_header_lines = 0, string container = "", string shared_name = "", string? name = null) { var _ctx = tf.Context; @@ -1165,9 +1745,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TextLineReader", name, "skip_header_lines", skip_header_lines, "container", container, "shared_name", shared_name)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TextLineReader", name) { args = new object[] { }, attrs = new Dictionary() { ["skip_header_lines"] = skip_header_lines, ["container"] = container, ["shared_name"] = shared_name } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1179,8 +1763,19 @@ internal static class gen_io_ops { } } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } Dictionary keywords = new(); - keywords["skip_header_lines"] = skip_header_lines; keywords["container"] = container; keywords["shared_name"] = shared_name; var _op = tf.OpDefLib._apply_op_helper("TextLineReader", name, keywords); + keywords["skip_header_lines"] = skip_header_lines; + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("TextLineReader", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -1201,6 +1796,27 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// A Reader that outputs the lines of a file delimited by '\n'. + /// + /// + /// + /// Number of lines to skip from the beginning of every file. + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// public static Tensor text_line_reader_v2(int skip_header_lines = 0, string container = "", string shared_name = "", string? name = null) { var _ctx = tf.Context; @@ -1208,9 +1824,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TextLineReaderV2", name, "skip_header_lines", skip_header_lines, "container", container, "shared_name", shared_name)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TextLineReaderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["skip_header_lines"] = skip_header_lines, ["container"] = container, ["shared_name"] = shared_name } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1222,8 +1842,19 @@ internal static class gen_io_ops { } } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } Dictionary keywords = new(); - keywords["skip_header_lines"] = skip_header_lines; keywords["container"] = container; keywords["shared_name"] = shared_name; var _op = tf.OpDefLib._apply_op_helper("TextLineReaderV2", name, keywords); + keywords["skip_header_lines"] = skip_header_lines; + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("TextLineReaderV2", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -1244,6 +1875,28 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// A Reader that outputs the entire contents of a file as a value. + /// + /// + /// + /// To use, enqueue filenames in a Queue. The output of ReaderRead will + /// be a filename (key) and the contents of that file (value). + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// public static Tensor whole_file_reader(string container = "", string shared_name = "", string? name = null) { var _ctx = tf.Context; @@ -1251,9 +1904,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WholeFileReader", name, "container", container, "shared_name", shared_name)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WholeFileReader", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1265,8 +1922,18 @@ internal static class gen_io_ops { } } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } Dictionary keywords = new(); - keywords["container"] = container; keywords["shared_name"] = shared_name; var _op = tf.OpDefLib._apply_op_helper("WholeFileReader", name, keywords); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("WholeFileReader", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -1287,6 +1954,28 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// A Reader that outputs the entire contents of a file as a value. + /// + /// + /// + /// To use, enqueue filenames in a Queue. The output of ReaderRead will + /// be a filename (key) and the contents of that file (value). + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// public static Tensor whole_file_reader_v2(string container = "", string shared_name = "", string? name = null) { var _ctx = tf.Context; @@ -1294,9 +1983,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WholeFileReaderV2", name, "container", container, "shared_name", shared_name)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WholeFileReaderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1308,8 +2001,18 @@ internal static class gen_io_ops { } } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } Dictionary keywords = new(); - keywords["container"] = container; keywords["shared_name"] = shared_name; var _op = tf.OpDefLib._apply_op_helper("WholeFileReaderV2", name, keywords); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("WholeFileReaderV2", name, keywords); var _result = _op.outputs; if (_execute.must_record_gradient()) { @@ -1330,6 +2033,17 @@ internal static class gen_io_ops } return _result[0]; } + /// + /// Writes `contents` to the file at input `filename`. + /// + /// + /// + /// Creates the file and recursively creates directory if it does not exist. + /// + /// + /// + /// + /// public static Operation write_file(Tensor filename, Tensor contents, string? name = null) { var _ctx = tf.Context; @@ -1337,9 +2051,13 @@ internal static class gen_io_ops { try { - var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WriteFile", name, filename, contents)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WriteFile", name) { args = new object[] { filename, contents }, attrs = new Dictionary() { } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1364,7 +2082,7 @@ internal static class gen_io_ops return _op; } - public static Tensor write_file_eager_fallback(Tensor filename, Tensor contents, string name, Context ctx) + public static Operation write_file_eager_fallback(Tensor filename, Tensor contents, string name, Context ctx) { Tensor[] _inputs_flat = new Tensor[] { filename, contents }; object[] _attrs = new object[] { }; diff --git a/src/TensorFlowNET.Core/Operations/gen_list_ops.cs b/src/TensorFlowNET.Core/Operations/gen_list_ops.cs index e7253986..59c783b2 100644 --- a/src/TensorFlowNET.Core/Operations/gen_list_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_list_ops.cs @@ -2,6 +2,7 @@ using Tensorflow.Eager; using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; namespace Tensorflow; @@ -35,6 +36,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EmptyTensorList", name) { args = new object[] { element_shape, max_num_elements }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -98,6 +103,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListConcat", name) { args = new object[] { input_handle }, attrs = new Dictionary() { ["element_dtype"] = element_dtype, ["element_shape"] = element_shape } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -151,6 +160,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListConcatLists", name) { args = new object[] { input_a, input_b }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -221,6 +234,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListConcatV2", name) { args = new object[] { input_handle, element_shape, leading_dims }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -280,6 +297,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListElementShape", name) { args = new object[] { input_handle }, attrs = new Dictionary() { ["shape_type"] = shape_type } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -339,6 +360,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListFromTensor", name) { args = new object[] { tensor, element_shape }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -402,6 +427,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListGather", name) { args = new object[] { input_handle, indices, element_shape }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -457,6 +486,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListGetItem", name) { args = new object[] { input_handle, index, element_shape }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -515,6 +548,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListLength", name) { args = new object[] { input_handle }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -576,6 +613,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListPopBack", name) { args = new object[] { input_handle, element_shape }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -637,6 +678,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListPushBack", name) { args = new object[] { input_handle, tensor }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -688,6 +733,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListPushBackBatch", name) { args = new object[] { input_handles, tensor }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -748,6 +797,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListReserve", name) { args = new object[] { element_shape, num_elements }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -808,6 +861,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListResize", name) { args = new object[] { input_handle, size }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -872,6 +929,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListScatter", name) { args = new object[] { tensor, indices, element_shape }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -936,6 +997,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListScatterIntoExistingList", name) { args = new object[] { input_handle, tensor, indices }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1005,6 +1070,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListScatterV2", name) { args = new object[] { tensor, indices, element_shape, num_elements }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1059,6 +1128,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListSetItem", name) { args = new object[] { input_handle, index, item }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1123,6 +1196,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListSplit", name) { args = new object[] { tensor, element_shape, lengths }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1187,6 +1264,10 @@ public static class gen_list_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListStack", name) { args = new object[] { input_handle, element_shape }, attrs = new Dictionary() { ["element_dtype"] = element_dtype, ["num_elements"] = num_elements } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } diff --git a/src/TensorFlowNET.Core/Operations/gen_math_ops.cs b/src/TensorFlowNET.Core/Operations/gen_math_ops.cs index 6eb7a411..a8152a11 100644 --- a/src/TensorFlowNET.Core/Operations/gen_math_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_math_ops.cs @@ -2,6 +2,7 @@ using Tensorflow.Eager; using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; namespace Tensorflow; @@ -30,6 +31,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Abs", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -96,6 +101,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AccumulateNV2", name) { args = new object[] { inputs }, attrs = new Dictionary() { ["shape"] = shape } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -157,6 +166,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Acos", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -217,6 +230,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Acosh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -278,6 +295,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Add", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -338,6 +359,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AddN", name) { args = new object[] { inputs }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -396,6 +421,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AddV2", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -460,6 +489,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "All", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -533,6 +566,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Angle", name) { args = new object[] { input }, attrs = new Dictionary() { ["Tout"] = Tout } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -597,6 +634,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Any", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -650,6 +691,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ApproximateEqual", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["tolerance"] = tolerance } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -718,6 +763,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ArgMax", name) { args = new object[] { input, dimension }, attrs = new Dictionary() { ["output_type"] = output_type } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -786,6 +835,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ArgMin", name) { args = new object[] { input, dimension }, attrs = new Dictionary() { ["output_type"] = output_type } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -857,6 +910,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Asin", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -918,6 +975,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Asinh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -987,6 +1048,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Atan", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1055,6 +1120,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Atan2", name) { args = new object[] { y, x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1119,6 +1188,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Atanh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1201,6 +1274,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatMul", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["adj_x"] = adj_x, ["adj_y"] = adj_y } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1291,6 +1368,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatMulV2", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["adj_x"] = adj_x, ["adj_y"] = adj_y } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1386,6 +1467,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatMulV3", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["Tout"] = Tout, ["adj_x"] = adj_x, ["adj_y"] = adj_y } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1458,6 +1543,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Betainc", name) { args = new object[] { a, b, x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1522,6 +1611,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Bincount", name) { args = new object[] { arr, size, weights }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1592,6 +1685,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Bucketize", name) { args = new object[] { input }, attrs = new Dictionary() { ["boundaries"] = boundaries } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1644,6 +1741,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cast", name) { args = new object[] { x }, attrs = new Dictionary() { ["DstT"] = DstT, ["Truncate"] = Truncate } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1695,6 +1796,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Ceil", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1754,6 +1859,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ClipByValue", name) { args = new object[] { t, clip_value_min, clip_value_max }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1825,6 +1934,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Complex", name) { args = new object[] { real, imag }, attrs = new Dictionary() { ["Tout"] = Tout } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1892,6 +2005,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ComplexAbs", name) { args = new object[] { x }, attrs = new Dictionary() { ["Tout"] = Tout } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1959,6 +2076,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conj", name) { args = new object[] { input }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2021,6 +2142,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cos", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2082,6 +2207,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cosh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2139,6 +2268,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cross", name) { args = new object[] { a, b }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2232,6 +2365,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cumprod", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["exclusive"] = exclusive, ["reverse"] = reverse } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2327,6 +2464,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cumsum", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["exclusive"] = exclusive, ["reverse"] = reverse } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2412,6 +2553,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "CumulativeLogsumexp", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["exclusive"] = exclusive, ["reverse"] = reverse } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2482,6 +2627,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DenseBincount", name) { args = new object[] { input, size, weights }, attrs = new Dictionary() { ["binary_output"] = binary_output } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2539,6 +2688,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Digamma", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2595,6 +2748,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Div", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2653,6 +2810,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DivNoNan", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2721,6 +2882,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Equal", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["incompatible_shape_error"] = incompatible_shape_error } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2772,6 +2937,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Erf", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2821,6 +2990,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Erfc", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2870,6 +3043,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Erfinv", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2933,6 +3110,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EuclideanNorm", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3014,6 +3195,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Exp", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3080,6 +3265,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Expm1", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3129,6 +3318,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Floor", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3185,6 +3378,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FloorDiv", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3246,6 +3443,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FloorMod", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3315,6 +3516,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Greater", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3384,6 +3589,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "GreaterEqual", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3456,6 +3665,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "HistogramFixedWidth", name) { args = new object[] { values, value_range, nbins }, attrs = new Dictionary() { ["dtype"] = dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3526,6 +3739,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Igamma", name) { args = new object[] { a, x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3577,6 +3794,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IgammaGradA", name) { args = new object[] { a, x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3644,6 +3865,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Igammac", name) { args = new object[] { a, x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3710,6 +3935,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Imag", name) { args = new object[] { input }, attrs = new Dictionary() { ["Tout"] = Tout } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3765,6 +3994,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Inv", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3821,6 +4054,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InvGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3885,6 +4122,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IsFinite", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3948,6 +4189,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IsInf", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4011,6 +4256,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IsNan", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4079,6 +4328,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Less", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4148,6 +4401,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LessEqual", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4211,6 +4468,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Lgamma", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4275,6 +4536,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LinSpace", name) { args = new object[] { start, stop, num }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4338,6 +4603,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Log", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4399,6 +4668,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Log1p", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4455,6 +4728,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LogicalAnd", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4505,6 +4782,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LogicalNot", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4561,6 +4842,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LogicalOr", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4633,9 +4918,12 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatMul", name) { args = new object[] { a, b }, attrs = new Dictionary() { ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b } }); return _fast_path_result[0]; } - catch (Exception ex) + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) { - Console.WriteLine(); } try { @@ -4700,6 +4988,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Max", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4758,6 +5050,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Maximum", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4822,6 +5118,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Mean", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4887,6 +5187,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Min", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4945,6 +5249,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Minimum", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5005,6 +5313,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Mod", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5062,6 +5374,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Mul", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5119,6 +5435,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MulNoNan", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5169,6 +5489,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Ndtri", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5223,6 +5547,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Neg", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5284,6 +5612,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "NextAfter", name) { args = new object[] { x1, x2 }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5342,6 +5674,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "NotEqual", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["incompatible_shape_error"] = incompatible_shape_error } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5405,6 +5741,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Polygamma", name) { args = new object[] { a, x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5468,6 +5808,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Pow", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5532,6 +5876,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Prod", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5616,6 +5964,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeDownAndShrinkRange", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5674,6 +6026,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedAdd", name) { args = new object[] { x, y, min_x, max_x, min_y, max_y }, attrs = new Dictionary() { ["Toutput"] = Toutput } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5759,6 +6115,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMul", name) { args = new object[] { a, b, min_a, max_a, min_b, max_b }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["Tactivation"] = Tactivation } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5823,6 +6183,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMul", name) { args = new object[] { x, y, min_x, max_x, min_y, max_y }, attrs = new Dictionary() { ["Toutput"] = Toutput } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5897,6 +6261,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RaggedBincount", name) { args = new object[] { splits, values, size, weights }, attrs = new Dictionary() { ["binary_output"] = binary_output } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5967,6 +6335,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Range", name) { args = new object[] { start, limit, delta }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6034,6 +6406,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Real", name) { args = new object[] { input }, attrs = new Dictionary() { ["Tout"] = Tout } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6093,6 +6469,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RealDiv", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6148,6 +6528,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Reciprocal", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6204,6 +6588,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReciprocalGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6264,6 +6652,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RequantizationRange", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6323,6 +6715,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RequantizationRangePerChannel", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { ["clip_value_max"] = clip_value_max } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6395,6 +6791,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Requantize", name) { args = new object[] { input, input_min, input_max, requested_output_min, requested_output_max }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6458,6 +6858,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RequantizePerChannel", name) { args = new object[] { input, input_min, input_max, requested_output_min, requested_output_max }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6525,6 +6929,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Rint", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6580,6 +6988,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Round", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6634,6 +7046,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Rsqrt", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6690,6 +7106,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RsqrtGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6772,6 +7192,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentMax", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6856,6 +7280,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentMean", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6938,6 +7366,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentMin", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7020,6 +7452,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentProd", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7102,6 +7538,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentSum", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7196,6 +7636,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Select", name) { args = new object[] { condition, t, e }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7249,6 +7693,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SelectV2", name) { args = new object[] { condition, t, e }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7305,6 +7753,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sigmoid", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7361,6 +7813,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SigmoidGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7422,6 +7878,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sign", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7483,6 +7943,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sin", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7544,6 +8008,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sinh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7606,6 +8074,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SobolSample", name) { args = new object[] { dim, num_results, skip }, attrs = new Dictionary() { ["dtype"] = dtype } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7678,6 +8150,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseBincount", name) { args = new object[] { indices, values, dense_shape, size, weights }, attrs = new Dictionary() { ["binary_output"] = binary_output } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7750,6 +8226,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseMatMul", name) { args = new object[] { a, b }, attrs = new Dictionary() { ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["a_is_sparse"] = a_is_sparse, ["b_is_sparse"] = b_is_sparse } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7814,6 +8294,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentMean", name) { args = new object[] { data, indices, segment_ids }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7874,6 +8358,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentMeanGrad", name) { args = new object[] { grad, indices, segment_ids, output_dim0 }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7939,6 +8427,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentMeanWithNumSegments", name) { args = new object[] { data, indices, segment_ids, num_segments }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8001,6 +8493,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentSqrtN", name) { args = new object[] { data, indices, segment_ids }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8087,6 +8583,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentSum", name) { args = new object[] { data, indices, segment_ids }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8147,6 +8647,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentSumGrad", name) { args = new object[] { grad, indices, segment_ids, output_dim0 }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8233,6 +8737,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentSumWithNumSegments", name) { args = new object[] { data, indices, segment_ids, num_segments }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8290,6 +8798,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sqrt", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8346,6 +8858,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SqrtGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8401,6 +8917,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Square", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8457,6 +8977,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SquaredDifference", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8514,6 +9038,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sub", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8578,6 +9106,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sum", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8642,6 +9174,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Tan", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8705,6 +9241,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Tanh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8761,6 +9301,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TanhGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8823,6 +9367,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TruncateDiv", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8883,6 +9431,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TruncateMod", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8974,6 +9526,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnsortedSegmentMax", name) { args = new object[] { data, segment_ids, num_segments }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9061,6 +9617,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnsortedSegmentMin", name) { args = new object[] { data, segment_ids, num_segments }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9147,6 +9707,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnsortedSegmentProd", name) { args = new object[] { data, segment_ids, num_segments }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9237,6 +9801,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnsortedSegmentSum", name) { args = new object[] { data, segment_ids, num_segments }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9289,6 +9857,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Xdivy", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9340,6 +9912,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Xlog1py", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9391,6 +9967,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Xlogy", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -9450,6 +10030,10 @@ public static class gen_math_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Zeta", name) { args = new object[] { x, q }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } diff --git a/src/TensorFlowNET.Core/Operations/gen_nn_ops.cs b/src/TensorFlowNET.Core/Operations/gen_nn_ops.cs index c0cec278..59c740c4 100644 --- a/src/TensorFlowNET.Core/Operations/gen_nn_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_nn_ops.cs @@ -2,6 +2,7 @@ using Tensorflow.Eager; using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; namespace Tensorflow; @@ -57,6 +58,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ApproxTopK", name) { args = new object[] { input }, attrs = new Dictionary() { ["k"] = k, ["reduction_dimension"] = reduction_dimension, ["recall_target"] = recall_target, ["is_max_k"] = is_max_k, ["reduction_input_size_override"] = reduction_input_size_override, ["aggregate_to_topk"] = aggregate_to_topk } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -142,6 +147,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AvgPool", name) { args = new object[] { value }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -231,6 +240,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AvgPool3D", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -315,6 +328,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AvgPool3DGrad", name) { args = new object[] { orig_input_shape, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -398,6 +415,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AvgPoolGrad", name) { args = new object[] { orig_input_shape, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -476,6 +497,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchNormWithGlobalNormalization", name) { args = new object[] { t, m, v, beta, gamma }, attrs = new Dictionary() { ["variance_epsilon"] = variance_epsilon, ["scale_after_normalization"] = scale_after_normalization } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -551,6 +576,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchNormWithGlobalNormalizationGrad", name) { args = new object[] { t, m, v, gamma, backprop }, attrs = new Dictionary() { ["variance_epsilon"] = variance_epsilon, ["scale_after_normalization"] = scale_after_normalization } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -624,6 +653,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BiasAdd", name) { args = new object[] { value, bias }, attrs = new Dictionary() { ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -697,6 +730,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BiasAddGrad", name) { args = new object[] { out_backprop }, attrs = new Dictionary() { ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -760,6 +797,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BiasAddV1", name) { args = new object[] { value, bias }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -883,6 +924,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv2D", name) { args = new object[] { input, filter }, attrs = new Dictionary() { ["strides"] = strides, ["use_cudnn_on_gpu"] = use_cudnn_on_gpu, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -992,6 +1037,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv2DBackpropFilter", name) { args = new object[] { input, filter_sizes, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["use_cudnn_on_gpu"] = use_cudnn_on_gpu, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1102,6 +1151,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv2DBackpropInput", name) { args = new object[] { input_sizes, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["use_cudnn_on_gpu"] = use_cudnn_on_gpu, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1206,6 +1259,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3D", name) { args = new object[] { input, filter }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1282,6 +1339,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3DBackpropFilter", name) { args = new object[] { input, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1371,6 +1432,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3DBackpropFilterV2", name) { args = new object[] { input, filter_sizes, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1448,6 +1513,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3DBackpropInput", name) { args = new object[] { input, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1537,6 +1606,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3DBackpropInputV2", name) { args = new object[] { input_sizes, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1611,6 +1684,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DataFormatDimMap", name) { args = new object[] { x }, attrs = new Dictionary() { ["src_format"] = src_format, ["dst_format"] = dst_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1715,6 +1792,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DataFormatVecPermute", name) { args = new object[] { x }, attrs = new Dictionary() { ["src_format"] = src_format, ["dst_format"] = dst_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1835,6 +1916,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DepthwiseConv2dNative", name) { args = new object[] { input, filter }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -1934,6 +2019,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DepthwiseConv2dNativeBackpropFilter", name) { args = new object[] { input, filter_sizes, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2034,6 +2123,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DepthwiseConv2dNativeBackpropInput", name) { args = new object[] { input_sizes, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2139,6 +2232,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Dilation2D", name) { args = new object[] { input, filter }, attrs = new Dictionary() { ["strides"] = strides, ["rates"] = rates, ["padding"] = padding } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2211,6 +2308,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Dilation2DBackpropFilter", name) { args = new object[] { input, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["rates"] = rates, ["padding"] = padding } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2284,6 +2385,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Dilation2DBackpropInput", name) { args = new object[] { input, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["rates"] = rates, ["padding"] = padding } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2358,6 +2463,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Elu", name) { args = new object[] { features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2408,6 +2517,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EluGrad", name) { args = new object[] { gradients, outputs }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2516,6 +2629,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FractionalAvgPool", name) { args = new object[] { value }, attrs = new Dictionary() { ["pooling_ratio"] = pooling_ratio, ["pseudo_random"] = pseudo_random, ["overlapping"] = overlapping, ["deterministic"] = deterministic, ["seed"] = seed, ["seed2"] = seed2 } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2596,6 +2713,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FractionalAvgPoolGrad", name) { args = new object[] { orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence }, attrs = new Dictionary() { ["overlapping"] = overlapping } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2731,6 +2852,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FractionalMaxPool", name) { args = new object[] { value }, attrs = new Dictionary() { ["pooling_ratio"] = pooling_ratio, ["pseudo_random"] = pseudo_random, ["overlapping"] = overlapping, ["deterministic"] = deterministic, ["seed"] = seed, ["seed2"] = seed2 } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2803,6 +2928,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FractionalMaxPoolGrad", name) { args = new object[] { orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence }, attrs = new Dictionary() { ["overlapping"] = overlapping } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2884,6 +3013,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNorm", name) { args = new object[] { x, scale, offset, mean, variance }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["exponential_avg_factor"] = exponential_avg_factor, ["data_format"] = data_format, ["is_training"] = is_training } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -2972,6 +3105,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormGrad", name) { args = new object[] { y_backprop, x, scale, reserve_space_1, reserve_space_2 }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["data_format"] = data_format, ["is_training"] = is_training } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3059,6 +3196,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormGradV2", name) { args = new object[] { y_backprop, x, scale, reserve_space_1, reserve_space_2 }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["data_format"] = data_format, ["is_training"] = is_training } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3147,6 +3288,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormGradV3", name) { args = new object[] { y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3 }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["data_format"] = data_format, ["is_training"] = is_training } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3235,6 +3380,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormV2", name) { args = new object[] { x, scale, offset, mean, variance }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["exponential_avg_factor"] = exponential_avg_factor, ["data_format"] = data_format, ["is_training"] = is_training } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3323,6 +3472,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormV3", name) { args = new object[] { x, scale, offset, mean, variance }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["exponential_avg_factor"] = exponential_avg_factor, ["data_format"] = data_format, ["is_training"] = is_training } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3413,6 +3566,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedPadConv2D", name) { args = new object[] { input, paddings, filter }, attrs = new Dictionary() { ["mode"] = mode, ["strides"] = strides, ["padding"] = padding } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3502,6 +3659,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedResizeAndPadConv2D", name) { args = new object[] { input, size, paddings, filter }, attrs = new Dictionary() { ["resize_align_corners"] = resize_align_corners, ["mode"] = mode, ["strides"] = strides, ["padding"] = padding } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3582,6 +3743,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InTopK", name) { args = new object[] { predictions, targets }, attrs = new Dictionary() { ["k"] = k } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3653,6 +3818,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InTopKV2", name) { args = new object[] { predictions, targets, k }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3707,6 +3876,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IsotonicRegression", name) { args = new object[] { input }, attrs = new Dictionary() { ["output_dtype"] = output_dtype } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3792,6 +3965,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LRN", name) { args = new object[] { input }, attrs = new Dictionary() { ["depth_radius"] = depth_radius, ["bias"] = bias, ["alpha"] = alpha, ["beta"] = beta } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3846,6 +4023,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LeakyRelu", name) { args = new object[] { features }, attrs = new Dictionary() { ["alpha"] = alpha } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3898,6 +4079,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LeakyReluGrad", name) { args = new object[] { gradients, features }, attrs = new Dictionary() { ["alpha"] = alpha } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -3956,6 +4141,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LogSoftmax", name) { args = new object[] { logits }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4035,6 +4224,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPool", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4119,6 +4312,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPool3D", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4204,6 +4401,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPool3DGrad", name) { args = new object[] { orig_input, orig_output, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4291,6 +4492,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPool3DGradGrad", name) { args = new object[] { orig_input, orig_output, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4382,6 +4587,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGrad", name) { args = new object[] { orig_input, orig_output, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4469,6 +4678,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradGrad", name) { args = new object[] { orig_input, orig_output, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4546,6 +4759,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradGradV2", name) { args = new object[] { orig_input, orig_output, grad, ksize, strides }, attrs = new Dictionary() { ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4628,6 +4845,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradGradWithArgmax", name) { args = new object[] { input, grad, argmax }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["include_batch_in_index"] = include_batch_in_index } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4701,6 +4922,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradV2", name) { args = new object[] { orig_input, orig_output, grad, ksize, strides }, attrs = new Dictionary() { ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4783,6 +5008,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradWithArgmax", name) { args = new object[] { input, grad, argmax }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["include_batch_in_index"] = include_batch_in_index } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4854,6 +5083,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolV2", name) { args = new object[] { input, ksize, strides }, attrs = new Dictionary() { ["padding"] = padding, ["data_format"] = data_format } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -4946,6 +5179,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolWithArgmax", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["Targmax"] = Targmax, ["padding"] = padding, ["include_batch_in_index"] = include_batch_in_index } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5018,6 +5255,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "NthElement", name) { args = new object[] { input, n }, attrs = new Dictionary() { ["reverse"] = reverse } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5088,6 +5329,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedAvgPool", name) { args = new object[] { input, min_input, max_input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5174,6 +5419,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedBatchNormWithGlobalNormalization", name) { args = new object[] { t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max }, attrs = new Dictionary() { ["out_type"] = out_type, ["variance_epsilon"] = variance_epsilon, ["scale_after_normalization"] = scale_after_normalization } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5251,6 +5500,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedBiasAdd", name) { args = new object[] { input, bias, min_input, max_input, min_bias, max_bias }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5344,6 +5597,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2D", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5420,6 +5677,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DAndRelu", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5499,6 +5760,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DAndReluAndRequantize", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5580,6 +5845,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DAndRequantize", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5662,6 +5931,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DPerChannel", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5739,6 +6012,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBias", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5818,6 +6095,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasAndRelu", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5899,6 +6180,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasAndReluAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -5982,6 +6267,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6068,6 +6357,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6153,6 +6446,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasSumAndRelu", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, summand }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6238,6 +6535,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasSumAndReluAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6322,6 +6623,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedDepthwiseConv2D", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6400,6 +6705,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedDepthwiseConv2DWithBias", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6484,6 +6793,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedDepthwiseConv2DWithBiasAndRelu", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6571,6 +6884,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6660,6 +6977,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBias", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6735,6 +7056,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBiasAndDequantize", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6828,6 +7153,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBiasAndRelu", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6922,6 +7251,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBiasAndReluAndRequantize", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -6999,6 +7332,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBiasAndRequantize", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7083,6 +7420,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMaxPool", name) { args = new object[] { input, min_input, max_input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7140,6 +7481,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedRelu", name) { args = new object[] { features, min_features, max_features }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7195,6 +7540,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedRelu6", name) { args = new object[] { features, min_features, max_features }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7251,6 +7600,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedReluX", name) { args = new object[] { features, max_value, min_features, max_features }, attrs = new Dictionary() { ["out_type"] = out_type } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7312,6 +7665,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Relu", name) { args = new object[] { features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7361,6 +7718,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Relu6", name) { args = new object[] { features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7411,6 +7772,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReluGrad", name) { args = new object[] { gradients, features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7472,6 +7837,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Selu", name) { args = new object[] { features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7522,6 +7891,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SeluGrad", name) { args = new object[] { gradients, outputs }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7579,6 +7952,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Softmax", name) { args = new object[] { logits }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7634,6 +8011,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SoftmaxCrossEntropyWithLogits", name) { args = new object[] { features, labels }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7684,6 +8065,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Softplus", name) { args = new object[] { features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7734,6 +8119,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SoftplusGrad", name) { args = new object[] { gradients, features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7784,6 +8173,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Softsign", name) { args = new object[] { features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7834,6 +8227,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SoftsignGrad", name) { args = new object[] { gradients, features }, attrs = new Dictionary() { } }); return _fast_path_result[0]; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7895,6 +8292,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSoftmaxCrossEntropyWithLogits", name) { args = new object[] { features, labels }, attrs = new Dictionary() { } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -7973,6 +8374,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TopK", name) { args = new object[] { input }, attrs = new Dictionary() { ["k"] = k, ["sorted"] = sorted } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } @@ -8045,6 +8450,10 @@ public static class gen_nn_ops var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TopKV2", name) { args = new object[] { input, k }, attrs = new Dictionary() { ["sorted"] = sorted } }); return _fast_path_result; } + catch (NotOkStatusException ex) + { + throw ex; + } catch (Exception) { } diff --git a/tools/Tensorflow.CodeGen/GenOpsWriter.cs b/tools/Tensorflow.CodeGen/GenOpsWriter.cs index 7601acdb..9eefca07 100644 --- a/tools/Tensorflow.CodeGen/GenOpsWriter.cs +++ b/tools/Tensorflow.CodeGen/GenOpsWriter.cs @@ -39,6 +39,7 @@ namespace Tensorflow.CodeGen // Add commonly used namespaces. sb.AppendLine("using Tensorflow.Eager;"); sb.AppendLine("using Tensorflow.Contexts;"); + sb.AppendLine("using Tensorflow.Exceptions;"); sb.AppendLine("using static Tensorflow.Binding;"); sb.AppendLine();