You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

SequentialModelLoad.cs 2.8 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System;
  3. using System.Linq;
  4. using Tensorflow;
  5. using Tensorflow.Keras.Optimizers;
  6. using Tensorflow.Keras.UnitTest.Helpers;
  7. using Tensorflow.NumPy;
  8. using static Tensorflow.Binding;
  9. namespace TensorFlowNET.Keras.UnitTest.SaveModel;
  10. [TestClass]
  11. public class SequentialModelLoad
  12. {
  13. [TestMethod]
  14. public void SimpleModelFromAutoCompile()
  15. {
  16. var model = tf.keras.models.load_model(@"Assets/simple_model_from_auto_compile");
  17. model.summary();
  18. model.compile(new Adam(0.0001f), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" });
  19. // check the weights
  20. var kernel1 = np.load(@"Assets/simple_model_from_auto_compile/kernel1.npy");
  21. var bias0 = np.load(@"Assets/simple_model_from_auto_compile/bias0.npy");
  22. Assert.IsTrue(kernel1.Zip(model.TrainableWeights[2].numpy()).All(x => x.First == x.Second));
  23. Assert.IsTrue(bias0.Zip(model.TrainableWeights[1].numpy()).All(x => x.First == x.Second));
  24. var data_loader = new MnistModelLoader();
  25. var num_epochs = 1;
  26. var batch_size = 8;
  27. var dataset = data_loader.LoadAsync(new ModelLoadSetting
  28. {
  29. TrainDir = "mnist",
  30. OneHot = false,
  31. ValidationSize = 58000,
  32. }).Result;
  33. model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);
  34. }
  35. [TestMethod]
  36. public void AlexnetFromSequential()
  37. {
  38. new SequentialModelSave().AlexnetFromSequential();
  39. var model = tf.keras.models.load_model(@"./alexnet_from_sequential");
  40. model.summary();
  41. model.compile(new Adam(0.001f), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" });
  42. var num_epochs = 1;
  43. var batch_size = 8;
  44. var dataset = new RandomDataSet(new Shape(227, 227, 3), 16);
  45. model.fit(dataset.Data, dataset.Labels, batch_size, num_epochs);
  46. }
  47. [TestMethod]
  48. public void Temp()
  49. {
  50. var model = tf.keras.models.load_model(@"Assets/python_func_model");
  51. model.summary();
  52. var x = tf.random.uniform((8, 784), -1, 1);
  53. var y = model.Apply(x);
  54. Console.WriteLine(y);
  55. //model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" });
  56. //var data_loader = new MnistModelLoader();
  57. //var num_epochs = 1;
  58. //var batch_size = 8;
  59. //var dataset = data_loader.LoadAsync(new ModelLoadSetting
  60. //{
  61. // TrainDir = "mnist",
  62. // OneHot = false,
  63. // ValidationSize = 58000,
  64. //}).Result;
  65. //model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);
  66. }
  67. }