You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 12 kB

6 years ago
6 years ago
7 years ago
4 years ago
7 years ago
5 years ago
6 years ago
6 years ago
6 years ago
6 years ago
7 years ago
6 years ago
6 years ago
5 years ago
7 years ago
5 years ago
6 years ago
5 years ago
6 years ago
5 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. ![logo](docs/assets/tf.net.logo.png)
  2. **TensorFlow.NET** (TF.NET) provides a .NET Standard binding for [TensorFlow](https://www.tensorflow.org/). It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework. TensorFlow.NET has built-in Keras high-level interface and is released as an independent package [TensorFlow.Keras](https://www.nuget.org/packages/TensorFlow.Keras/).
  3. [![Join the chat at https://gitter.im/publiclab/publiclab](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/sci-sharp/community)
  4. [![Tensorflow.NET](https://ci.appveyor.com/api/projects/status/wx4td43v2d3f2xj6?svg=true)](https://ci.appveyor.com/project/Haiping-Chen/tensorflow-net)
  5. [![NuGet](https://img.shields.io/nuget/dt/TensorFlow.NET.svg)](https://www.nuget.org/packages/TensorFlow.NET)
  6. [![Documentation Status](https://readthedocs.org/projects/tensorflownet/badge/?version=latest)](https://tensorflownet.readthedocs.io/en/latest/?badge=latest)
  7. [![Badge](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu/#/en_US)
  8. [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab)
  9. *master branch is based on tensorflow v2.x, v0.6x branch is based on tensorflow v2.6, v0.15-tensorflow1.15 is from tensorflow1.15.*
  10. ![tensors_flowing](docs/assets/tensors_flowing.gif)
  11. ### Why TensorFlow in C# and F# ?
  12. `SciSharp STACK`'s mission is to bring popular data science technology into the .NET world and to provide .NET developers with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.
  13. ![pythn vs csharp](docs/assets/syntax-comparision.png)
  14. SciSharp's philosophy allows a large number of machine learning code written in Python to be quickly migrated to .NET, enabling .NET developers to use cutting edge machine learning models and access a vast number of TensorFlow resources which would not be possible without this project.
  15. In comparison to other projects, like for instance [TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/) which only provide TensorFlow's low-level C++ API and can only run models that were built using Python, Tensorflow.NET makes it possible to build the pipeline of training and inference with pure C# and F#. Besides, Tensorflow.NET provides binding of Tensorflow.Keras to make it easy to transfer your code from python to .NET.
  16. [ML.NET](https://github.com/dotnet/machinelearning) also support using tensorflow as backend to train and infer your model, which provides better integration with .NET.
  17. Go through the online docs [TensorFlow for .NET](https://scisharp.github.io/tensorflow-net-docs) before you get started with Machine Learning in .NET.
  18. ### How to use
  19. | TensorFlow | tf native1.14, cuda 10.0 | tf native 1.15, cuda 10.0 | tf native 2.3, cuda 10.1 | tf native 2.4, cuda 11 |
  20. | -------------------------- | ------------- | -------------- | ------------- | ------------- |
  21. | tf.net 0.4x, tf.keras 0.5 | | | | x |
  22. | tf.net 0.3x, tf.keras 0.4 | | | x | |
  23. | tf.net 0.2x | | x | x | |
  24. | tf.net 0.15 | x | x | | |
  25. | tf.net 0.14 | x | | | |
  26. Troubleshooting of running example or installation, please refer [here](tensorflowlib/README.md).
  27. There are many examples reside at [TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples) written in C# and F#.
  28. #### TensorFlow.net Version
  29. ` tf.net 0.4x -> tf native 2.4`
  30. `tf.net 0.6x -> tf native 2.6`
  31. `tf.net 0.7x -> tf native 2.7`
  32. `tf.net 0.10x -> tf native 2.10`
  33. `...`
  34. #### C# Example
  35. Install TF.NET and TensorFlow binary through NuGet.
  36. ```sh
  37. ### install tensorflow C#/F# binding
  38. PM> Install-Package TensorFlow.NET
  39. ### install keras for tensorflow
  40. PM> Install-Package TensorFlow.Keras
  41. ### Install tensorflow binary
  42. ### For CPU version
  43. PM> Install-Package SciSharp.TensorFlow.Redist
  44. ### For GPU version (CUDA and cuDNN are required)
  45. PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
  46. ```
  47. Import TF.NET and Keras API in your project.
  48. ```csharp
  49. using static Tensorflow.Binding;
  50. using static Tensorflow.KerasApi;
  51. using Tensorflow;
  52. using Tensorflow.NumPy;
  53. ```
  54. Linear Regression in `Eager` mode:
  55. ```csharp
  56. // Parameters
  57. var training_steps = 1000;
  58. var learning_rate = 0.01f;
  59. var display_step = 100;
  60. // Sample data
  61. var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
  62. 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
  63. var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
  64. 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
  65. var n_samples = X.shape[0];
  66. // We can set a fixed init value in order to demo
  67. var W = tf.Variable(-0.06f, name: "weight");
  68. var b = tf.Variable(-0.73f, name: "bias");
  69. var optimizer = keras.optimizers.SGD(learning_rate);
  70. // Run training for the given number of steps.
  71. foreach (var step in range(1, training_steps + 1))
  72. {
  73. // Run the optimization to update W and b values.
  74. // Wrap computation inside a GradientTape for automatic differentiation.
  75. using var g = tf.GradientTape();
  76. // Linear regression (Wx + b).
  77. var pred = W * X + b;
  78. // Mean square error.
  79. var loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
  80. // should stop recording
  81. // Compute gradients.
  82. var gradients = g.gradient(loss, (W, b));
  83. // Update W and b following gradients.
  84. optimizer.apply_gradients(zip(gradients, (W, b)));
  85. if (step % display_step == 0)
  86. {
  87. pred = W * X + b;
  88. loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
  89. print($"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}");
  90. }
  91. }
  92. ```
  93. Run this example in [Jupyter Notebook](https://github.com/SciSharp/SciSharpCube).
  94. Toy version of `ResNet` in `Keras` functional API:
  95. ```csharp
  96. var layers = new LayersApi();
  97. // input layer
  98. var inputs = keras.Input(shape: (32, 32, 3), name: "img");
  99. // convolutional layer
  100. var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs);
  101. x = layers.Conv2D(64, 3, activation: "relu").Apply(x);
  102. var block_1_output = layers.MaxPooling2D(3).Apply(x);
  103. x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output);
  104. x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
  105. var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output));
  106. x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output);
  107. x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
  108. var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output));
  109. x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output);
  110. x = layers.GlobalAveragePooling2D().Apply(x);
  111. x = layers.Dense(256, activation: "relu").Apply(x);
  112. x = layers.Dropout(0.5f).Apply(x);
  113. // output layer
  114. var outputs = layers.Dense(10).Apply(x);
  115. // build keras model
  116. var model = keras.Model(inputs, outputs, name: "toy_resnet");
  117. model.summary();
  118. // compile keras model in tensorflow static graph
  119. model.compile(optimizer: keras.optimizers.RMSprop(1e-3f),
  120. loss: keras.losses.CategoricalCrossentropy(from_logits: true),
  121. metrics: new[] { "acc" });
  122. // prepare dataset
  123. var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data();
  124. x_train = x_train / 255.0f;
  125. y_train = np_utils.to_categorical(y_train, 10);
  126. // training
  127. model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)],
  128. batch_size: 64,
  129. epochs: 10,
  130. validation_split: 0.2f);
  131. ```
  132. #### F# Example
  133. Linear Regression in `Eager` mode:
  134. ```fsharp
  135. #r "nuget: TensorFlow.Net"
  136. #r "nuget: TensorFlow.Keras"
  137. #r "nuget: SciSharp.TensorFlow.Redist"
  138. open Tensorflow
  139. open Tensorflow.NumPy
  140. open type Tensorflow.Binding
  141. open type Tensorflow.KerasApi
  142. let tf = New<tensorflow>()
  143. tf.enable_eager_execution()
  144. // Parameters
  145. let training_steps = 1000
  146. let learning_rate = 0.01f
  147. let display_step = 100
  148. // Sample data
  149. let train_X =
  150. np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
  151. 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f)
  152. let train_Y =
  153. np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
  154. 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f)
  155. let n_samples = train_X.shape.[0]
  156. // We can set a fixed init value in order to demo
  157. let W = tf.Variable(-0.06f,name = "weight")
  158. let b = tf.Variable(-0.73f, name = "bias")
  159. let optimizer = keras.optimizers.SGD(learning_rate)
  160. // Run training for the given number of steps.
  161. for step = 1 to (training_steps + 1) do
  162. // Run the optimization to update W and b values.
  163. // Wrap computation inside a GradientTape for automatic differentiation.
  164. use g = tf.GradientTape()
  165. // Linear regression (Wx + b).
  166. let pred = W * train_X + b
  167. // Mean square error.
  168. let loss = tf.reduce_sum(tf.pow(pred - train_Y,2)) / (2 * n_samples)
  169. // should stop recording
  170. // compute gradients
  171. let gradients = g.gradient(loss,struct (W,b))
  172. // Update W and b following gradients.
  173. optimizer.apply_gradients(zip(gradients, struct (W,b)))
  174. if (step % display_step) = 0 then
  175. let pred = W * train_X + b
  176. let loss = tf.reduce_sum(tf.pow(pred-train_Y,2)) / (2 * n_samples)
  177. printfn $"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}"
  178. ```
  179. Read the book [The Definitive Guide to Tensorflow.NET](https://tensorflownet.readthedocs.io/en/latest/FrontCover.html) if you want to know more about TensorFlow for .NET under the hood.
  180. ### Contribute:
  181. Feel like contributing to one of the hottest projects in the Machine Learning field? Want to know how Tensorflow magically creates the computational graph? We appreciate every contribution however small. There are tasks for novices to experts alike, if everyone tackles only a small task the sum of contributions will be huge.
  182. You can:
  183. * Let everyone know about this project
  184. * Port Tensorflow unit tests from Python to C# or F#
  185. * Port missing Tensorflow code from Python to C# or F#
  186. * Port Tensorflow examples to C# or F# and raise issues if you come accross missing parts of the API
  187. * Debug one of the unit tests that is marked as Ignored to get it to work
  188. * Debug one of the not yet working examples and get it to work
  189. ### How to debug unit tests:
  190. The best way to find out why a unit test is failing is to single step it in C# or F# and its corresponding Python at the same time to see where the flow of execution digresses or where variables exhibit different values. Good Python IDEs like PyCharm let you single step into the tensorflow library code.
  191. ### Git Knowhow for Contributors
  192. Add SciSharp/TensorFlow.NET as upstream to your local repo ...
  193. ```git
  194. git remote add upstream git@github.com:SciSharp/TensorFlow.NET.git
  195. ```
  196. Please make sure you keep your fork up to date by regularly pulling from upstream.
  197. ```git
  198. git pull upstream master
  199. ```
  200. ### Support
  201. Buy our book to make open source project be sustainable [TensorFlow.NET实战](https://item.jd.com/13441549.html)
  202. <p float="left">
  203. <img src="https://user-images.githubusercontent.com/1705364/198852429-91741881-c196-401e-8e9e-2f8656196613.png" width="250" />
  204. <img src="https://user-images.githubusercontent.com/1705364/198852521-2f842043-3ace-49d2-8533-039c6a043a3f.png" width="260" />
  205. <img src="https://user-images.githubusercontent.com/1705364/198852721-54cd9e7e-9210-4931-a86c-77584b25b8e1.png" width="260" />
  206. </p>
  207. ### Contact
  208. Follow us on [Twitter](https://twitter.com/ScisharpStack), [Facebook](https://www.facebook.com/scisharp.stack.9), [Medium](https://medium.com/scisharp), [LinkedIn](https://www.linkedin.com/company/scisharp-stack/).
  209. Join our chat on [Gitter](https://gitter.im/sci-sharp/community).
  210. TensorFlow.NET is a part of [SciSharp STACK](https://scisharp.github.io/SciSharp/)
  211. <br>
  212. <a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp-stack.png" width="391" height="100" /></a>