You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

LinearRegression.cs 3.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. using NumSharp.Core;
  2. using System;
  3. using System.Collections.Generic;
  4. using System.Text;
  5. using Tensorflow;
  6. namespace TensorFlowNET.Examples
  7. {
  8. /// <summary>
  9. /// A linear regression learning algorithm example using TensorFlow library.
  10. /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py
  11. /// </summary>
  12. public class LinearRegression : Python, IExample
  13. {
  14. private NumPyRandom rng = np.random;
  15. public void Run()
  16. {
  17. var graph = tf.Graph().as_default();
  18. // Parameters
  19. float learning_rate = 0.01f;
  20. int training_epochs = 1000;
  21. int display_step = 1;
  22. // Training Data
  23. var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
  24. 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
  25. var train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
  26. 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
  27. var n_samples = train_X.shape[0];
  28. // tf Graph Input
  29. var X = tf.placeholder(tf.float32);
  30. var Y = tf.placeholder(tf.float32);
  31. // Set model weights
  32. //var rnd1 = rng.randn<float>();
  33. //var rnd2 = rng.randn<float>();
  34. var W = tf.Variable(-0.06f, name: "weight");
  35. var b = tf.Variable(-0.73f, name: "bias");
  36. var mul = tf.multiply(X, W);
  37. var pred = tf.add(mul, b);
  38. // Mean squared error
  39. var sub = pred - Y;
  40. var pow = tf.pow(sub, 2.0f);
  41. var reduce = tf.reduce_sum(pow);
  42. var cost = reduce / (2.0f * n_samples);
  43. // import graph
  44. // radient descent
  45. // Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
  46. var grad = tf.train.GradientDescentOptimizer(learning_rate);
  47. var optimizer = grad.minimize(cost);
  48. // Initialize the variables (i.e. assign their default value)
  49. var init = tf.global_variables_initializer();
  50. // Start training
  51. Python.with<Session>(tf.Session(graph), sess =>
  52. {
  53. // Run the initializer
  54. sess.run(init);
  55. // Fit all training data
  56. for (int epoch = 0; epoch < training_epochs; epoch++)
  57. {
  58. foreach (var (x, y) in zip<float>(train_X, train_Y))
  59. {
  60. sess.run(optimizer,
  61. new FeedItem(X, x),
  62. new FeedItem(Y, y));
  63. var w = sess.run(W);
  64. }
  65. // Display logs per epoch step
  66. if ((epoch + 1) % display_step == 0)
  67. {
  68. var c = sess.run(cost,
  69. new FeedItem(X, train_X),
  70. new FeedItem(Y, train_Y));
  71. var rW = sess.run(W);
  72. Console.WriteLine($"Epoch: {epoch + 1} cost={c} " +
  73. $"W={rW} b={sess.run(b)}");
  74. }
  75. }
  76. Console.WriteLine("Optimization Finished!");
  77. });
  78. }
  79. }
  80. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。