|
- # Copyright (c) Alibaba, Inc. and its affiliates.
-
- from typing import Dict
-
- import numpy as np
- from sklearn.metrics import accuracy_score, f1_score
-
- from modelscope.metainfo import Metrics
- from modelscope.outputs import OutputKeys
- from modelscope.utils.registry import default_group
- from modelscope.utils.tensor_utils import (torch_nested_detach,
- torch_nested_numpify)
- from .base import Metric
- from .builder import METRICS, MetricKeys
-
-
- @METRICS.register_module(
- group_key=default_group, module_name=Metrics.seq_cls_metric)
- class SequenceClassificationMetric(Metric):
- """The metric computation class for sequence classification tasks.
-
- This metric class calculates accuracy/F1 of all the input batches.
-
- Args:
- label_name: The key of label column in the 'inputs' arg.
- logit_name: The key of logits column in the 'inputs' arg.
- """
-
- def __init__(self,
- label_name=OutputKeys.LABELS,
- logit_name=OutputKeys.LOGITS,
- *args,
- **kwargs):
- super().__init__(*args, **kwargs)
- self.preds = []
- self.labels = []
- self.label_name = label_name
- self.logit_name = logit_name
-
- def add(self, outputs: Dict, inputs: Dict):
- ground_truths = inputs[self.label_name]
- eval_results = outputs[self.logit_name]
- self.preds.append(
- torch_nested_numpify(torch_nested_detach(eval_results)))
- self.labels.append(
- torch_nested_numpify(torch_nested_detach(ground_truths)))
-
- def evaluate(self):
- preds = np.concatenate(self.preds, axis=0)
- labels = np.concatenate(self.labels, axis=0)
- preds = np.argmax(preds, axis=1)
- return {
- MetricKeys.ACCURACY:
- accuracy_score(labels, preds),
- MetricKeys.F1:
- f1_score(
- labels,
- preds,
- average='micro' if any([label > 1
- for label in labels]) else None),
- }
|