|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.metainfo import Trainers
- from modelscope.models.multi_modal import MPlugForAllTasks
- from modelscope.msdatasets import MsDataset
- from modelscope.trainers import EpochBasedTrainer, build_trainer
- from modelscope.utils.constant import ModelFile
- from modelscope.utils.test_utils import test_level
-
-
- class TestFinetuneMPlug(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
- from modelscope.utils.constant import DownloadMode
- datadict = MsDataset.load(
- 'coco_captions_small_slice',
- download_mode=DownloadMode.FORCE_REDOWNLOAD)
- self.train_dataset = MsDataset(datadict['train'].to_hf_dataset().map(
- lambda _: {
- 'question': 'what the picture describes?'
- }).rename_column('image:FILE',
- 'image').rename_column('answer:Value', 'answer'))
- self.test_dataset = MsDataset(datadict['test'].to_hf_dataset().map(
- lambda _: {
- 'question': 'what the picture describes?'
- }).rename_column('image:FILE',
- 'image').rename_column('answer:Value', 'answer'))
-
- self.max_epochs = 2
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir)
- super().tearDown()
-
- def _cfg_modify_fn(self, cfg):
- cfg.train.hooks = [{
- 'type': 'CheckpointHook',
- 'interval': self.max_epochs
- }, {
- 'type': 'TextLoggerHook',
- 'interval': 1
- }, {
- 'type': 'IterTimerHook'
- }]
- return cfg
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer_with_caption(self):
- kwargs = dict(
- model='damo/mplug_image-captioning_coco_base_en',
- train_dataset=self.train_dataset,
- eval_dataset=self.test_dataset,
- max_epochs=self.max_epochs,
- work_dir=self.tmp_dir,
- cfg_modify_fn=self._cfg_modify_fn)
-
- trainer: EpochBasedTrainer = build_trainer(
- name=Trainers.nlp_base_trainer, default_args=kwargs)
- trainer.train()
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_trainer_with_caption_with_model_and_args(self):
- cache_path = snapshot_download(
- 'damo/mplug_image-captioning_coco_base_en')
- model = MPlugForAllTasks.from_pretrained(cache_path)
- kwargs = dict(
- cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
- model=model,
- train_dataset=self.train_dataset,
- eval_dataset=self.test_dataset,
- max_epochs=self.max_epochs,
- work_dir=self.tmp_dir)
-
- trainer: EpochBasedTrainer = build_trainer(
- name=Trainers.nlp_base_trainer, default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(self.max_epochs):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer_with_vqa(self):
- kwargs = dict(
- model='damo/mplug_visual-question-answering_coco_large_en',
- train_dataset=self.train_dataset,
- eval_dataset=self.test_dataset,
- max_epochs=self.max_epochs,
- work_dir=self.tmp_dir,
- cfg_modify_fn=self._cfg_modify_fn)
-
- trainer: EpochBasedTrainer = build_trainer(
- name=Trainers.nlp_base_trainer, default_args=kwargs)
- trainer.train()
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_trainer_with_vqa_with_model_and_args(self):
- cache_path = snapshot_download(
- 'damo/mplug_visual-question-answering_coco_large_en')
- model = MPlugForAllTasks.from_pretrained(cache_path)
- kwargs = dict(
- cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
- model=model,
- train_dataset=self.train_dataset,
- eval_dataset=self.test_dataset,
- max_epochs=self.max_epochs,
- work_dir=self.tmp_dir)
-
- trainer: EpochBasedTrainer = build_trainer(
- name=Trainers.nlp_base_trainer, default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(self.max_epochs):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer_with_retrieval(self):
- kwargs = dict(
- model='damo/mplug_image-text-retrieval_flickr30k_large_en',
- train_dataset=self.train_dataset,
- eval_dataset=self.test_dataset,
- max_epochs=self.max_epochs,
- work_dir=self.tmp_dir,
- cfg_modify_fn=self._cfg_modify_fn)
-
- trainer: EpochBasedTrainer = build_trainer(
- name=Trainers.nlp_base_trainer, default_args=kwargs)
- trainer.train()
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_trainer_with_retrieval_with_model_and_args(self):
- cache_path = snapshot_download(
- 'damo/mplug_image-text-retrieval_flickr30k_large_en')
- model = MPlugForAllTasks.from_pretrained(cache_path)
- kwargs = dict(
- cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
- model=model,
- train_dataset=self.train_dataset,
- eval_dataset=self.test_dataset,
- max_epochs=self.max_epochs,
- work_dir=self.tmp_dir)
-
- trainer: EpochBasedTrainer = build_trainer(
- name=Trainers.nlp_base_trainer, default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(self.max_epochs):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|