|
- # Copyright (c) Alibaba, Inc. and its affiliates.
-
- import unittest
-
- # NOTICE: Tensorflow 1.15 seems not so compatible with pytorch.
- # A segmentation fault may be raise by pytorch cpp library
- # if 'import tensorflow' in front of 'import torch'.
- # Puting a 'import torch' here can bypass this incompatibility.
- import torch
- from scipy.io.wavfile import write
-
- from modelscope.models import Model
- from modelscope.outputs import OutputKeys
- from modelscope.pipelines import pipeline
- from modelscope.utils.constant import Tasks
- from modelscope.utils.demo_utils import DemoCompatibilityCheck
- from modelscope.utils.logger import get_logger
- from modelscope.utils.test_utils import test_level
-
- import tensorflow as tf # isort:skip
-
- logger = get_logger()
-
-
- class TextToSpeechSambertHifigan16kPipelineTest(unittest.TestCase,
- DemoCompatibilityCheck):
-
- def setUp(self) -> None:
- self.task = Tasks.text_to_speech
- zhcn_text = '今天北京天气怎么样'
- en_text = 'How is the weather in Beijing?'
- zhcn_voice = ['zhitian_emo', 'zhizhe_emo', 'zhiyan_emo', 'zhibei_emo']
- enus_voice = ['andy', 'annie']
- engb_voice = ['luca', 'luna']
- self.tts_test_cases = []
- for voice in zhcn_voice:
- model_id = 'damo/speech_sambert-hifigan_tts_%s_%s_16k' % (voice,
- 'zh-cn')
- self.tts_test_cases.append({
- 'voice': voice,
- 'model_id': model_id,
- 'text': zhcn_text
- })
- for voice in enus_voice:
- model_id = 'damo/speech_sambert-hifigan_tts_%s_%s_16k' % (voice,
- 'en-us')
- self.tts_test_cases.append({
- 'voice': voice,
- 'model_id': model_id,
- 'text': en_text
- })
- for voice in engb_voice:
- model_id = 'damo/speech_sambert-hifigan_tts_%s_%s_16k' % (voice,
- 'en-gb')
- self.tts_test_cases.append({
- 'voice': voice,
- 'model_id': model_id,
- 'text': en_text
- })
- zhcn_model_id = 'damo/speech_sambert-hifigan_tts_zh-cn_16k'
- enus_model_id = 'damo/speech_sambert-hifigan_tts_en-us_16k'
- engb_model_id = 'damo/speech_sambert-hifigan_tts_en-gb_16k'
- self.tts_test_cases.append({
- 'voice': 'zhcn',
- 'model_id': zhcn_model_id,
- 'text': zhcn_text
- })
- self.tts_test_cases.append({
- 'voice': 'enus',
- 'model_id': enus_model_id,
- 'text': en_text
- })
- self.tts_test_cases.append({
- 'voice': 'engb',
- 'model_id': engb_model_id,
- 'text': en_text
- })
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_pipeline(self):
- for case in self.tts_test_cases:
- logger.info('test %s' % case['voice'])
- model = Model.from_pretrained(
- model_name_or_path=case['model_id'], revision='pytorch_am')
- sambert_hifigan_tts = pipeline(task=self.task, model=model)
- self.assertTrue(sambert_hifigan_tts is not None)
- output = sambert_hifigan_tts(input=case['text'])
- self.assertIsNotNone(output[OutputKeys.OUTPUT_PCM])
- pcm = output[OutputKeys.OUTPUT_PCM]
- write('output_%s.wav' % case['voice'], 16000, pcm)
-
- @unittest.skip('demo compatibility test is only enabled on a needed-basis')
- def test_demo_compatibility(self):
- self.compatibility_check()
-
-
- if __name__ == '__main__':
- unittest.main()
|