|
- # Copyright (c) 2022 Zhipu.AI
- from typing import List, Union
-
- import torch
- from transformers import AutoTokenizer
- from transformers.models.gpt2 import GPT2TokenizerFast
-
-
- def encode_whitespaces(text, start_extra_id: int, max_len: int):
- """ Encode whitespaces to extra tokens in GPT-J.
-
- >>> encode_whitespaces('a\\n b\\n c', 10, 10)
- 'a\\n<|extratoken_10|>b\\n<|extratoken_11|>c'
- """
-
- def push_acc_space(acc_len: int, text: str):
- if acc_len == 0:
- return text
- if acc_len == 1:
- return text + ' '
- assert acc_len <= max_len, f'Max whitespace run length {max_len}, but found {acc_len}'
- extra_id = start_extra_id - 2 + acc_len
- extra_token = f'<|extratoken_{extra_id}|>'
- return text + extra_token
-
- acc_len = 0
- res = ''
- for ch in text:
- if ch == ' ':
- acc_len += 1
- if acc_len == max_len:
- res = push_acc_space(acc_len, res)
- acc_len = 0
- else:
- res = push_acc_space(acc_len, res)
- acc_len = 0
- res = res + ch
-
- res = push_acc_space(acc_len, res)
-
- return res
-
-
- def decode_whitespaces(text: str, start_extra_id: int, max_len: int):
- """ Decode the whitespace-encoded strings produced by encode_whitespace.
-
- >>> text = 'a\\n b\\n c'
- >>> s, l = 10, 10
- >>> text == decode_whitespaces(encode_whitespaces(text, s, l), s, l)
- True
- """
- for l in range(2, max_len + 1): # noqa
- token_id = start_extra_id - 2 + l
- token = f'<|extratoken_{token_id}|>'
- text = text.replace(token, ' ' * l)
- return text
-
-
- class Code13BDictionary(object):
-
- def __init__(
- self,
- dict_file: str,
- extra_token_ids: List[str] = None,
- pad_to_vocab_size: int = -1,
- ):
- self._idx = dict()
- self._count = dict()
- self._num_symbols = 0
- self._symbols = []
-
- self._add_symbol('<s>', 0)
- self._add_symbol('<pad>', 0)
- self._add_symbol('</s>', 0)
- self._add_symbol('<unk>', 0)
- self._load_dict(dict_file)
-
- if extra_token_ids is None:
- extra_token_ids = [str(x) for x in range(50257, 50400)
- ] # follows GPT-J settings
-
- for token_id in extra_token_ids:
- self._add_symbol(token_id, 0)
-
- if pad_to_vocab_size > 0:
- self._pad_to_vocab_size(pad_to_vocab_size)
-
- def _pad_to_vocab_size(self, vocab_size: int):
- num_pad = vocab_size - len(self)
- if num_pad <= 0:
- return
- for i in range(1, num_pad + 1):
- self._add_symbol('vocab_pad_token{}'.format(i), 0)
-
- def _load_dict(self, dict_file: str):
- with open(dict_file, 'r') as f:
- for line in f:
- line = line.strip()
- if line == '' or line.startswith('#'):
- continue
- sym, count = line.split()
- self._add_symbol(sym, int(count))
-
- def _add_symbol(self, sym: str, count: int):
- self._idx[sym] = self._num_symbols
- self._count[sym] = count
- self._symbols.append(sym)
- self._num_symbols += 1
-
- def __len__(self):
- return self._num_symbols
-
- def index(self, sym: str):
- return self._idx[sym]
-
- def string(self, idx: int):
- return self._symbols[idx]
-
- def map_token(self, token: Union[int, str]):
- if isinstance(token, int):
- token = str(token)
- return self.index(token)
-
- def map_tokens(self, tokens):
- return [self.map_token(token) for token in tokens]
-
- def decode_tokens(self, tokens):
- decoded = [
- '50256' if token == 50256 else self.string(token)
- for token in tokens
- ]
- return [int(x) for x in decoded if not x.startswith('vocab_pad_token')]
-
-
- class CodeGeeXTokenizer(object):
-
- def __init__(
- self,
- tokenizer: GPT2TokenizerFast = None,
- tokenizer_path: str = 'EleutherAI/gpt-j-6B',
- start_extra_id: int = 10,
- max_len: int = 10,
- mode='codegeex-13b',
- dict_file: str = None,
- ):
- self.tokenizer = tokenizer if tokenizer is not None else AutoTokenizer.from_pretrained(
- tokenizer_path)
- if mode not in ['codegeex-13b', 'codegeex-python-13b']:
- raise ValueError(
- f"Invalid mode {mode}, choose from ['codegeex-13b', 'codegeex-python-13b']"
- )
- self.start_extra_id = start_extra_id
- self.max_len = max_len
- self.mode = mode
- if dict_file is not None:
- self.code_dict = Code13BDictionary(
- dict_file, pad_to_vocab_size=51200
- ) if self.mode == 'codegeex-python-13b' else None
- else:
- self.code_dict = None
- self.eos_token_id = self.tokenizer.eos_token_id
-
- def encode_code(self, code: str):
- if self.mode == 'codegeex-13b':
- code = encode_whitespaces(code, self.start_extra_id, self.max_len)
- input_ids = self.tokenizer(
- code, is_split_into_words=False).input_ids
-
- elif self.mode == 'codegeex-python-13b':
- code = encode_whitespaces(code, self.start_extra_id, self.max_len)
- input_ids = self.code_dict.map_tokens(self.tokenizer.encode(code))
- input_ids = torch.LongTensor(input_ids).reshape(1, -1)
-
- return input_ids
-
- def decode_code(self, input_ids):
- if self.mode == 'codegeex-13b':
- text = self.tokenizer.decode(input_ids, skip_special_tokens=False)
- output_code = decode_whitespaces(text, self.start_extra_id,
- self.max_len)
- elif self.mode == 'codegeex-python-13b':
- input_ids = [self.code_dict.decode_tokens(input_ids.tolist()[0])]
- text = self.tokenizer.decode(input_ids, skip_special_tokens=False)
- output_code = decode_whitespaces(text, self.start_extra_id,
- self.max_len)
-
- return output_code
|