|
- # Copyright (c) 2022 Kensho Hara.
- # Copyright 2021-2022 The Alibaba Fundamental Vision Team Authors. All rights reserved.
-
- # The implementation here is modified based on 3D-ResNets-PyTorch,
- # originally MIT License, Copyright (c) 2022 Kensho Hara,
- # and publicly available at https://github.com/kenshohara/3D-ResNets-PyTorch/blob/master/models/resnet.py
- """ ResNet3D Model Architecture."""
-
- import torch
- import torch.nn as nn
-
-
- def conv3x3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
- return nn.Conv3d(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=dilation,
- groups=groups,
- bias=False,
- dilation=dilation)
-
-
- def conv1x1x1(in_planes, out_planes, stride=1):
- return nn.Conv3d(
- in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
-
-
- class BasicBlock(nn.Module):
- expansion = 1
-
- def __init__(self,
- inplanes,
- planes,
- stride=1,
- downsample=None,
- groups=1,
- base_width=64,
- dilation=1,
- norm_layer=None):
- super(BasicBlock, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm3d
- if groups != 1 or base_width != 64:
- raise ValueError(
- 'BasicBlock only supports groups=1 and base_width=64')
- if dilation > 1:
- raise NotImplementedError(
- 'Dilation > 1 not supported in BasicBlock')
- self.conv1 = conv3x3x3(inplanes, planes, stride)
- self.bn1 = norm_layer(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3x3(planes, planes)
- self.bn2 = norm_layer(planes)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
-
- return out
-
-
- class Bottleneck(nn.Module):
- expansion = 4
-
- def __init__(self,
- inplanes,
- planes,
- stride=1,
- downsample=None,
- groups=1,
- base_width=64,
- dilation=1,
- norm_layer=None):
- super(Bottleneck, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm3d
- width = int(planes * (base_width / 64.)) * groups
- self.conv1 = conv1x1x1(inplanes, width)
- self.bn1 = norm_layer(width)
- self.conv2 = conv3x3x3(width, width, stride, groups, dilation)
- self.bn2 = norm_layer(width)
- self.conv3 = conv1x1x1(width, planes * self.expansion)
- self.bn3 = norm_layer(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
-
- return out
-
-
- class ResNet3d(nn.Module):
-
- def __init__(self,
- block,
- layers,
- num_classes=1000,
- zero_init_residual=True,
- groups=1,
- width_per_group=64,
- replace_stride_with_dilation=None,
- dropout=0.5,
- inplanes=3,
- first_stride=2,
- norm_layer=None,
- last_pool=True):
- super(ResNet3d, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm3d
- if not last_pool and num_classes is not None:
- raise ValueError('num_classes should be None when last_pool=False')
- self._norm_layer = norm_layer
-
- self.inplanes = 64
- self.dilation = 1
- if replace_stride_with_dilation is None:
- replace_stride_with_dilation = [False, False, False]
- if len(replace_stride_with_dilation) != 3:
- raise ValueError('replace_stride_with_dilation should be None '
- 'or a 3-element tuple, got {}'.format(
- replace_stride_with_dilation))
- self.groups = groups
- self.base_width = width_per_group
- self.conv1 = nn.Conv3d(
- inplanes,
- self.inplanes,
- kernel_size=(3, 7, 7),
- stride=(1, first_stride, first_stride),
- padding=(1, 3, 3),
- bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool3d(
- kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1))
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(
- block,
- 128,
- layers[1],
- stride=2,
- dilate=replace_stride_with_dilation[0])
- self.layer3 = self._make_layer(
- block,
- 256,
- layers[2],
- stride=2,
- dilate=replace_stride_with_dilation[1])
- self.layer4 = self._make_layer(
- block,
- 512,
- layers[3],
- stride=2,
- dilate=replace_stride_with_dilation[2])
- self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1)) if last_pool else None
- if num_classes is None:
- self.dropout = None
- self.fc = None
- else:
- self.dropout = nn.Dropout(dropout)
- self.fc = nn.Linear(512 * block.expansion, num_classes)
- self.out_planes = 512 * block.expansion
-
- for m in self.modules():
- if isinstance(m, nn.Conv3d):
- nn.init.kaiming_normal_(
- m.weight, mode='fan_out', nonlinearity='relu')
- elif isinstance(m, (nn.BatchNorm3d, nn.GroupNorm)):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
-
- if zero_init_residual:
- for m in self.modules():
- if isinstance(m, Bottleneck):
- nn.init.constant_(m.bn3.weight, 0)
- elif isinstance(m, BasicBlock):
- nn.init.constant_(m.bn2.weight, 0)
-
- def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if dilate:
- self.dilation *= stride
- stride = 1
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion))
-
- layers = []
- layers.append(
- block(self.inplanes, planes, stride, downsample, self.groups,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(
- block(
- self.inplanes,
- planes,
- groups=self.groups,
- base_width=self.base_width,
- dilation=self.dilation,
- norm_layer=norm_layer))
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- if self.avgpool:
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- if self.dropout and self.fc:
- x = self.dropout(x)
- x = self.fc(x)
-
- return x
-
-
- def resnet10_3d(**kwargs):
- return ResNet3d(BasicBlock, [1, 1, 1, 1], **kwargs)
-
-
- def resnet18_3d(**kwargs):
- return ResNet3d(BasicBlock, [2, 2, 2, 2], **kwargs)
-
-
- def resnet26_3d(**kwargs):
- return ResNet3d(Bottleneck, [2, 2, 2, 2], **kwargs)
-
-
- def resnet34_3d(**kwargs):
- return ResNet3d(BasicBlock, [3, 4, 6, 3], **kwargs)
-
-
- def resnet50_3d(**kwargs):
- return ResNet3d(Bottleneck, [3, 4, 6, 3], **kwargs)
-
-
- def resnet101_3d(**kwargs):
- return ResNet3d(Bottleneck, [3, 4, 23, 3], **kwargs)
-
-
- def resnet152_3d(**kwargs):
- return ResNet3d(Bottleneck, [3, 8, 36, 3], **kwargs)
-
-
- def resnet200_3d(**kwargs):
- return ResNet3d(Bottleneck, [3, 24, 36, 3], **kwargs)
|