|
- from typing import Any, Dict
-
- from maas_lib.utils.constant import Tasks
- from ..base import Model, Tensor
- from ..builder import MODELS
-
- __all__ = ['PalmForTextGenerationModel']
-
-
- @MODELS.register_module(Tasks.text_generation, module_name=r'palm')
- class PalmForTextGenerationModel(Model):
-
- def __init__(self, model_dir: str, *args, **kwargs):
- """initialize the text generation model from the `model_dir` path.
-
- Args:
- model_dir (str): the model path.
- model_cls (Optional[Any], optional): model loader, if None, use the
- default loader to load model weights, by default None.
- """
- from sofa import PalmTokenizer
-
- super().__init__(model_dir, *args, **kwargs)
- self.model_dir = model_dir
-
- from sofa.models.palm import PalmForConditionalGeneration, TextGenerator
- tokenizer = kwargs.pop('tokenizer',
- PalmTokenizer.from_pretrained(model_dir))
- model = PalmForConditionalGeneration.from_pretrained(model_dir)
- self.generator = TextGenerator(model, tokenizer)
-
- def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]:
- """return the result by the model
-
- Args:
- input (Dict[str, Any]): the preprocessed data
-
- Returns:
- Dict[str, np.ndarray]: results
- Example:
- {
- 'predictions': array([1]), # lable 0-negative 1-positive
- 'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32),
- 'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value
- }
- """
-
- encoder_inputs = [
- input['input_ids'], input['token_type_ids'],
- input['attention_mask']
- ]
- return self.generator(encoder_inputs)
|