# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import tempfile import unittest import json import numpy as np import torch from torch import nn from modelscope.metrics.builder import METRICS, MetricKeys from modelscope.trainers import build_trainer from modelscope.utils.constant import LogKeys, ModelFile from modelscope.utils.registry import default_group from modelscope.utils.test_utils import create_dummy_test_dataset _global_iter = 0 @METRICS.register_module(group_key=default_group, module_name='DummyMetric') class DummyMetric: _fake_acc_by_epoch = {1: 0.1, 2: 0.5, 3: 0.2} def add(*args, **kwargs): pass def evaluate(self): global _global_iter _global_iter += 1 return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]} dummy_dataset = create_dummy_test_dataset( np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20) class DummyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(5, 4) self.bn = nn.BatchNorm1d(4) def forward(self, feat, labels): x = self.linear(feat) x = self.bn(x) loss = torch.sum(x) return dict(logits=x, loss=loss) class EvaluationHookTest(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def tearDown(self): super().tearDown() shutil.rmtree(self.tmp_dir) def test_best_ckpt_rule_max(self): global _global_iter _global_iter = 0 json_cfg = { 'task': 'image_classification', 'train': { 'work_dir': self.tmp_dir, 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1 }, 'optimizer': { 'type': 'SGD', 'lr': 0.01, }, 'lr_scheduler': { 'type': 'StepLR', 'step_size': 2, }, 'hooks': [{ 'type': 'EvaluationHook', 'interval': 1, 'save_best_ckpt': True, 'monitor_key': MetricKeys.ACCURACY }] }, 'evaluation': { 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1, 'shuffle': False }, 'metrics': ['DummyMetric'] } } config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) with open(config_path, 'w') as f: json.dump(json_cfg, f) trainer_name = 'EpochBasedTrainer' kwargs = dict( cfg_file=config_path, model=DummyModel(), data_collator=None, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, max_epochs=3) trainer = build_trainer(trainer_name, kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files) self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files) self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files) self.assertIn(f'best_{LogKeys.EPOCH}2_{MetricKeys.ACCURACY}0.5.pth', results_files) def test_best_ckpt_rule_min(self): global _global_iter _global_iter = 0 json_cfg = { 'task': 'image_classification', 'train': { 'work_dir': self.tmp_dir, 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1 }, 'optimizer': { 'type': 'SGD', 'lr': 0.01, }, 'lr_scheduler': { 'type': 'StepLR', 'step_size': 2, }, 'hooks': [{ 'type': 'EvaluationHook', 'interval': 1, 'save_best_ckpt': True, 'monitor_key': 'accuracy', 'rule': 'min', 'out_dir': os.path.join(self.tmp_dir, 'best_ckpt') }] }, 'evaluation': { 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1, 'shuffle': False }, 'metrics': ['DummyMetric'] } } config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) with open(config_path, 'w') as f: json.dump(json_cfg, f) trainer_name = 'EpochBasedTrainer' kwargs = dict( cfg_file=config_path, model=DummyModel(), data_collator=None, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, max_epochs=3) trainer = build_trainer(trainer_name, kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files) self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files) self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files) self.assertIn(f'best_{LogKeys.EPOCH}1_{MetricKeys.ACCURACY}0.1.pth', os.listdir(os.path.join(self.tmp_dir, 'best_ckpt'))) if __name__ == '__main__': unittest.main()