# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import tempfile import unittest import zipfile from functools import partial from modelscope.hub.snapshot_download import snapshot_download from modelscope.metainfo import Trainers from modelscope.msdatasets import MsDataset from modelscope.trainers import build_trainer from modelscope.utils.config import Config, ConfigDict from modelscope.utils.constant import DownloadMode, ModelFile from modelscope.utils.test_utils import test_level class TestGeneralImageClassificationTestTrainer(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) try: self.train_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='train') self.eval_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='validation') except Exception as e: print(f'Download dataset error: {e}') self.max_epochs = 1 self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def tearDown(self): shutil.rmtree(self.tmp_dir) super().tearDown() @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_nextvit_dailylife_train(self): model_id = 'damo/cv_nextvit-small_image-classification_Dailylife-labels' def cfg_modify_fn(cfg): cfg.train.dataloader.batch_size_per_gpu = 32 cfg.train.dataloader.workers_per_gpu = 1 cfg.train.max_epochs = self.max_epochs cfg.model.mm_model.head.num_classes = 2 cfg.train.optimizer.lr = 1e-4 cfg.train.lr_config.warmup_iters = 1 cfg.train.evaluation.metric_options = {'topk': (1, )} cfg.evaluation.metric_options = {'topk': (1, )} return cfg kwargs = dict( model=model_id, work_dir=self.tmp_dir, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, cfg_modify_fn=cfg_modify_fn) trainer = build_trainer( name=Trainers.image_classification, default_args=kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{trainer.timestamp}.log.json', results_files) for i in range(self.max_epochs): self.assertIn(f'epoch_{i+1}.pth', results_files) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_nextvit_dailylife_eval(self): model_id = 'damo/cv_nextvit-small_image-classification_Dailylife-labels' kwargs = dict( model=model_id, work_dir=self.tmp_dir, train_dataset=None, eval_dataset=self.eval_dataset) trainer = build_trainer( name=Trainers.image_classification, default_args=kwargs) result = trainer.evaluate() print(result) if __name__ == '__main__': unittest.main()