| @@ -0,0 +1,77 @@ | |||
| import os | |||
| from typing import Any, Dict | |||
| from modelscope.utils.config import Config | |||
| from modelscope.utils.constant import Tasks | |||
| from ...base import Model, Tensor | |||
| from ...builder import MODELS | |||
| from .model.generator import Generator | |||
| from .model.model_base import ModelBase | |||
| __all__ = ['DialogStateTrackingModel'] | |||
| @MODELS.register_module(Tasks.dialog_state_tracking, module_name=r'space-dst') | |||
| class DialogStateTrackingModel(Model): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| """initialize the test generation model from the `model_dir` path. | |||
| Args: | |||
| model_dir (str): the model path. | |||
| model_cls (Optional[Any], optional): model loader, if None, use the | |||
| default loader to load model weights, by default None. | |||
| """ | |||
| super().__init__(model_dir, *args, **kwargs) | |||
| self.model_dir = model_dir | |||
| self.config = kwargs.pop( | |||
| 'config', | |||
| Config.from_file( | |||
| os.path.join(self.model_dir, 'configuration.json'))) | |||
| self.text_field = kwargs.pop( | |||
| 'text_field', | |||
| IntentBPETextField(self.model_dir, config=self.config)) | |||
| self.generator = Generator.create(self.config, reader=self.text_field) | |||
| self.model = ModelBase.create( | |||
| model_dir=model_dir, | |||
| config=self.config, | |||
| reader=self.text_field, | |||
| generator=self.generator) | |||
| def to_tensor(array): | |||
| """ | |||
| numpy array -> tensor | |||
| """ | |||
| import torch | |||
| array = torch.tensor(array) | |||
| return array.cuda() if self.config.use_gpu else array | |||
| self.trainer = IntentTrainer( | |||
| model=self.model, | |||
| to_tensor=to_tensor, | |||
| config=self.config, | |||
| reader=self.text_field) | |||
| self.trainer.load() | |||
| def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]: | |||
| """return the result by the model | |||
| Args: | |||
| input (Dict[str, Any]): the preprocessed data | |||
| Returns: | |||
| Dict[str, np.ndarray]: results | |||
| Example: | |||
| { | |||
| 'predictions': array([1]), # lable 0-negative 1-positive | |||
| 'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32), | |||
| 'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value | |||
| } | |||
| """ | |||
| import numpy as np | |||
| pred = self.trainer.forward(input) | |||
| pred = np.squeeze(pred[0], 0) | |||
| return {'pred': pred} | |||
| @@ -0,0 +1,46 @@ | |||
| from typing import Any, Dict, Optional | |||
| from modelscope.models.nlp import DialogModelingModel | |||
| from modelscope.preprocessors import DialogModelingPreprocessor | |||
| from modelscope.utils.constant import Tasks | |||
| from ...base import Pipeline, Tensor | |||
| from ...builder import PIPELINES | |||
| __all__ = ['DialogStateTrackingPipeline'] | |||
| @PIPELINES.register_module( | |||
| Tasks.dialog_state_tracking, module_name=r'space-dst') | |||
| class DialogStateTrackingPipeline(Pipeline): | |||
| def __init__(self, model: DialogModelingModel, | |||
| preprocessor: DialogModelingPreprocessor, **kwargs): | |||
| """use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | |||
| Args: | |||
| model (SequenceClassificationModel): a model instance | |||
| preprocessor (SequenceClassificationPreprocessor): a preprocessor instance | |||
| """ | |||
| super().__init__(model=model, preprocessor=preprocessor, **kwargs) | |||
| self.model = model | |||
| self.preprocessor = preprocessor | |||
| def postprocess(self, inputs: Dict[str, Tensor]) -> Dict[str, str]: | |||
| """process the prediction results | |||
| Args: | |||
| inputs (Dict[str, Any]): _description_ | |||
| Returns: | |||
| Dict[str, str]: the prediction results | |||
| """ | |||
| sys_rsp = self.preprocessor.text_field.tokenizer.convert_ids_to_tokens( | |||
| inputs['resp']) | |||
| assert len(sys_rsp) > 2 | |||
| sys_rsp = sys_rsp[1:len(sys_rsp) - 1] | |||
| # sys_rsp = self.preprocessor.text_field.tokenizer. | |||
| inputs['sys'] = sys_rsp | |||
| return inputs | |||
| @@ -0,0 +1,49 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| import os | |||
| from typing import Any, Dict | |||
| from modelscope.preprocessors.space.fields.intent_field import \ | |||
| IntentBPETextField | |||
| from modelscope.utils.config import Config | |||
| from modelscope.utils.constant import Fields | |||
| from modelscope.utils.type_assert import type_assert | |||
| from ..base import Preprocessor | |||
| from ..builder import PREPROCESSORS | |||
| __all__ = ['DialogStateTrackingPreprocessor'] | |||
| @PREPROCESSORS.register_module(Fields.nlp, module_name=r'space-dst') | |||
| class DialogStateTrackingPreprocessor(Preprocessor): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| """preprocess the data via the vocab.txt from the `model_dir` path | |||
| Args: | |||
| model_dir (str): model path | |||
| """ | |||
| super().__init__(*args, **kwargs) | |||
| self.model_dir: str = model_dir | |||
| self.config = Config.from_file( | |||
| os.path.join(self.model_dir, 'configuration.json')) | |||
| self.text_field = IntentBPETextField( | |||
| self.model_dir, config=self.config) | |||
| @type_assert(object, str) | |||
| def __call__(self, data: str) -> Dict[str, Any]: | |||
| """process the raw input data | |||
| Args: | |||
| data (str): a sentence | |||
| Example: | |||
| 'you are so handsome.' | |||
| Returns: | |||
| Dict[str, Any]: the preprocessed data | |||
| """ | |||
| samples = self.text_field.preprocessor([data]) | |||
| samples, _ = self.text_field.collate_fn_multi_turn(samples) | |||
| return samples | |||
| @@ -42,6 +42,7 @@ class Tasks(object): | |||
| text_generation = 'text-generation' | |||
| dialog_modeling = 'dialog-modeling' | |||
| dialog_intent_prediction = 'dialog-intent-prediction' | |||
| dialog_state_tracking = 'dialog-state-tracking' | |||
| table_question_answering = 'table-question-answering' | |||
| feature_extraction = 'feature-extraction' | |||
| sentence_similarity = 'sentence-similarity' | |||