| @@ -27,6 +27,13 @@ class AccuracyMetric(Metric): | |||
| label_name = OutputKeys.LABEL if OutputKeys.LABEL in inputs else OutputKeys.LABELS | |||
| ground_truths = inputs[label_name] | |||
| eval_results = outputs[label_name] | |||
| for key in [ | |||
| OutputKeys.CAPTION, OutputKeys.TEXT, OutputKeys.BOXES, | |||
| OutputKeys.LABELS, OutputKeys.SCORES | |||
| ]: | |||
| if key in outputs and outputs[key] is not None: | |||
| eval_results = outputs[key] | |||
| break | |||
| assert type(ground_truths) == type(eval_results) | |||
| if isinstance(ground_truths, list): | |||
| self.preds.extend(eval_results) | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| from typing import Dict | |||
| import numpy as np | |||
| from similarity.normalized_levenshtein import NormalizedLevenshtein | |||
| from modelscope.metainfo import Metrics | |||
| from modelscope.outputs import OutputKeys | |||
| from modelscope.utils.registry import default_group | |||
| from .base import Metric | |||
| from .builder import METRICS, MetricKeys | |||
| @METRICS.register_module(group_key=default_group, module_name=Metrics.NED) | |||
| class NedMetric(Metric): | |||
| """The metric computation class for classification classes. | |||
| This metric class calculates accuracy for the whole input batches. | |||
| """ | |||
| def __init__(self, *args, **kwargs): | |||
| super().__init__(*args, **kwargs) | |||
| self.ned = NormalizedLevenshtein() | |||
| self.preds = [] | |||
| self.labels = [] | |||
| def add(self, outputs: Dict, inputs: Dict): | |||
| label_name = OutputKeys.LABEL if OutputKeys.LABEL in inputs else OutputKeys.LABELS | |||
| ground_truths = inputs[label_name] | |||
| eval_results = outputs[label_name] | |||
| for key in [ | |||
| OutputKeys.CAPTION, OutputKeys.TEXT, OutputKeys.BOXES, | |||
| OutputKeys.LABELS, OutputKeys.SCORES | |||
| ]: | |||
| if key in outputs and outputs[key] is not None: | |||
| eval_results = outputs[key] | |||
| break | |||
| assert type(ground_truths) == type(eval_results) | |||
| if isinstance(ground_truths, list): | |||
| self.preds.extend(eval_results) | |||
| self.labels.extend(ground_truths) | |||
| elif isinstance(ground_truths, np.ndarray): | |||
| self.preds.extend(eval_results.tolist()) | |||
| self.labels.extend(ground_truths.tolist()) | |||
| else: | |||
| raise 'only support list or np.ndarray' | |||
| def evaluate(self): | |||
| assert len(self.preds) == len(self.labels) | |||
| return { | |||
| MetricKeys.NED: (np.asarray([ | |||
| self.ned.distance(pred, ref) | |||
| for pred, ref in zip(self.preds, self.labels) | |||
| ])).mean().item() | |||
| } | |||
| @@ -91,8 +91,24 @@ class OfaOcrRecognitionPreprocessor(OfaBasePreprocessor): | |||
| ]) | |||
| def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||
| image = data['image'] if isinstance( | |||
| data['image'], Image.Image) else load_image(data['image']) | |||
| if self.mode == ModeKeys.TRAIN: | |||
| return self._build_train_sample(data) | |||
| else: | |||
| return self._build_infer_sample(data) | |||
| def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||
| sample = self._build_infer_sample(data) | |||
| target = data[self.column_map['text']] | |||
| target = target.translate(self.transtab).strip() | |||
| target_token_list = target.strip().split() | |||
| target = ' '.join(target_token_list[:self.max_tgt_length]) | |||
| sample['target'] = self.tokenize_text(target, add_bos=False) | |||
| sample['prev_output_tokens'] = torch.cat( | |||
| [self.bos_item, sample['target'][:-1]]) | |||
| return sample | |||
| def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: | |||
| image = self.get_img_pil(data[self.column_map['image']]) | |||
| patch_image = self.patch_resize_transform(image) | |||
| prompt = self.cfg.model.get('prompt', '图片上的文字是什么?') | |||
| inputs = self.tokenize_text(prompt) | |||
| @@ -102,4 +118,6 @@ class OfaOcrRecognitionPreprocessor(OfaBasePreprocessor): | |||
| 'patch_image': patch_image, | |||
| 'patch_mask': torch.tensor([True]) | |||
| } | |||
| if 'text' in self.column_map and self.column_map['text'] in data: | |||
| sample['label'] = data[self.column_map['text']] | |||
| return sample | |||
| @@ -6,6 +6,7 @@ pycocotools>=2.0.4 | |||
| # which introduced compatability issues that are being investigated | |||
| rouge_score<=0.0.4 | |||
| sacrebleu | |||
| strsim | |||
| taming-transformers-rom1504 | |||
| timm | |||
| tokenizers | |||
| @@ -15,9 +15,64 @@ from modelscope.utils.test_utils import test_level | |||
| class TestOfaTrainer(unittest.TestCase): | |||
| def setUp(self) -> None: | |||
| # self.finetune_cfg = \ | |||
| # {'framework': 'pytorch', | |||
| # 'task': 'image-captioning', | |||
| # 'model': {'type': 'ofa', | |||
| # 'beam_search': {'beam_size': 5, | |||
| # 'max_len_b': 16, | |||
| # 'min_len': 1, | |||
| # 'no_repeat_ngram_size': 0}, | |||
| # 'seed': 7, | |||
| # 'max_src_length': 256, | |||
| # 'language': 'en', | |||
| # 'gen_type': 'generation', | |||
| # 'patch_image_size': 480, | |||
| # 'max_image_size': 480, | |||
| # 'imagenet_default_mean_and_std': False}, | |||
| # 'pipeline': {'type': 'image-captioning'}, | |||
| # 'dataset': {'column_map': {'text': 'caption'}}, | |||
| # 'train': {'work_dir': 'work/ckpts/caption', | |||
| # # 'launcher': 'pytorch', | |||
| # 'max_epochs': 1, | |||
| # 'use_fp16': True, | |||
| # 'dataloader': {'batch_size_per_gpu': 4, 'workers_per_gpu': 0}, | |||
| # 'lr_scheduler': {'name': 'polynomial_decay', | |||
| # 'warmup_proportion': 0.01, | |||
| # 'lr_end': 1e-07}, | |||
| # 'lr_scheduler_hook': {'type': 'LrSchedulerHook', 'by_epoch': False}, | |||
| # 'optimizer': {'type': 'AdamW', 'lr': 5e-05, 'weight_decay': 0.01}, | |||
| # 'optimizer_hook': {'type': 'TorchAMPOptimizerHook', | |||
| # 'cumulative_iters': 1, | |||
| # 'grad_clip': {'max_norm': 1.0, 'norm_type': 2}, | |||
| # 'loss_keys': 'loss'}, | |||
| # 'criterion': {'name': 'AdjustLabelSmoothedCrossEntropyCriterion', | |||
| # 'constraint_range': None, | |||
| # 'drop_worst_after': 0, | |||
| # 'drop_worst_ratio': 0.0, | |||
| # 'ignore_eos': False, | |||
| # 'ignore_prefix_size': 0, | |||
| # 'label_smoothing': 0.1, | |||
| # 'reg_alpha': 1.0, | |||
| # 'report_accuracy': False, | |||
| # 'sample_patch_num': 196, | |||
| # 'sentence_avg': False, | |||
| # 'use_rdrop': True}, | |||
| # 'hooks': [{'type': 'BestCkptSaverHook', | |||
| # 'metric_key': 'bleu-4', | |||
| # 'interval': 100}, | |||
| # {'type': 'TextLoggerHook', 'interval': 1}, | |||
| # {'type': 'IterTimerHook'}, | |||
| # {'type': 'EvaluationHook', 'by_epoch': True, 'interval': 1}]}, | |||
| # 'evaluation': {'dataloader': {'batch_size_per_gpu': 4, 'workers_per_gpu': 0}, | |||
| # 'metrics': [{'type': 'bleu', | |||
| # 'eval_tokenized_bleu': False, | |||
| # 'ref_name': 'labels', | |||
| # 'hyp_name': 'caption'}]}, | |||
| # 'preprocessor': []} | |||
| self.finetune_cfg = \ | |||
| {'framework': 'pytorch', | |||
| 'task': 'image-captioning', | |||
| 'task': 'ocr-recognition', | |||
| 'model': {'type': 'ofa', | |||
| 'beam_search': {'beam_size': 5, | |||
| 'max_len_b': 16, | |||
| @@ -25,18 +80,19 @@ class TestOfaTrainer(unittest.TestCase): | |||
| 'no_repeat_ngram_size': 0}, | |||
| 'seed': 7, | |||
| 'max_src_length': 256, | |||
| 'language': 'en', | |||
| 'language': 'zh', | |||
| 'gen_type': 'generation', | |||
| 'patch_image_size': 480, | |||
| 'is_document': False, | |||
| 'max_image_size': 480, | |||
| 'imagenet_default_mean_and_std': False}, | |||
| 'pipeline': {'type': 'image-captioning'}, | |||
| 'pipeline': {'type': 'ofa-ocr-recognition'}, | |||
| 'dataset': {'column_map': {'text': 'caption'}}, | |||
| 'train': {'work_dir': 'work/ckpts/caption', | |||
| 'train': {'work_dir': 'work/ckpts/recognition', | |||
| # 'launcher': 'pytorch', | |||
| 'max_epochs': 1, | |||
| 'use_fp16': True, | |||
| 'dataloader': {'batch_size_per_gpu': 1, 'workers_per_gpu': 0}, | |||
| 'dataloader': {'batch_size_per_gpu': 4, 'workers_per_gpu': 0}, | |||
| 'lr_scheduler': {'name': 'polynomial_decay', | |||
| 'warmup_proportion': 0.01, | |||
| 'lr_end': 1e-07}, | |||
| @@ -59,39 +115,36 @@ class TestOfaTrainer(unittest.TestCase): | |||
| 'sentence_avg': False, | |||
| 'use_rdrop': True}, | |||
| 'hooks': [{'type': 'BestCkptSaverHook', | |||
| 'metric_key': 'bleu-4', | |||
| 'metric_key': 'ned', | |||
| 'rule': 'min', | |||
| 'interval': 100}, | |||
| {'type': 'TextLoggerHook', 'interval': 1}, | |||
| {'type': 'IterTimerHook'}, | |||
| {'type': 'EvaluationHook', 'by_epoch': True, 'interval': 1}]}, | |||
| 'evaluation': {'dataloader': {'batch_size_per_gpu': 4, 'workers_per_gpu': 0}, | |||
| 'metrics': [{'type': 'bleu', | |||
| 'eval_tokenized_bleu': False, | |||
| 'ref_name': 'labels', | |||
| 'hyp_name': 'caption'}]}, | |||
| 'metrics': [{'type': 'ned'}]}, | |||
| 'preprocessor': []} | |||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
| def test_trainer_std(self): | |||
| WORKSPACE = './workspace/ckpts/caption' | |||
| WORKSPACE = './workspace/ckpts/recognition' | |||
| os.makedirs(WORKSPACE, exist_ok=True) | |||
| config_file = os.path.join(WORKSPACE, ModelFile.CONFIGURATION) | |||
| with open(config_file, 'w') as writer: | |||
| json.dump(self.finetune_cfg, writer) | |||
| pretrained_model = 'damo/ofa_image-caption_coco_distilled_en' | |||
| pretrained_model = 'damo/ofa_ocr-recognition_scene_base_zh' | |||
| args = dict( | |||
| model=pretrained_model, | |||
| work_dir=WORKSPACE, | |||
| train_dataset=MsDataset.load( | |||
| 'coco_2014_caption', | |||
| namespace='modelscope', | |||
| split='train[:20]'), | |||
| split='train[:12]'), | |||
| eval_dataset=MsDataset.load( | |||
| 'coco_2014_caption', | |||
| namespace='modelscope', | |||
| split='validation[:10]'), | |||
| metrics=[Metrics.BLEU], | |||
| split='validation[:4]'), | |||
| cfg_file=config_file) | |||
| trainer = build_trainer(name=Trainers.ofa, default_args=args) | |||
| trainer.train() | |||
| @@ -1 +0,0 @@ | |||
| {"framework": "pytorch", "task": "image-captioning", "model": {"type": "ofa", "beam_search": {"beam_size": 5, "max_len_b": 16, "min_len": 1, "no_repeat_ngram_size": 0}, "seed": 7, "max_src_length": 256, "language": "en", "gen_type": "generation", "patch_image_size": 480, "max_image_size": 480, "imagenet_default_mean_and_std": false}, "pipeline": {"type": "image-captioning"}, "dataset": {"column_map": {"text": "caption"}}, "train": {"work_dir": "work/ckpts/caption", "max_epochs": 1, "use_fp16": true, "dataloader": {"batch_size_per_gpu": 4, "workers_per_gpu": 0}, "lr_scheduler": {"name": "polynomial_decay", "warmup_proportion": 0.01, "lr_end": 1e-07}, "lr_scheduler_hook": {"type": "LrSchedulerHook", "by_epoch": false}, "optimizer": {"type": "AdamW", "lr": 5e-05, "weight_decay": 0.01}, "optimizer_hook": {"type": "TorchAMPOptimizerHook", "cumulative_iters": 1, "grad_clip": {"max_norm": 1.0, "norm_type": 2}, "loss_keys": "loss"}, "criterion": {"name": "AdjustLabelSmoothedCrossEntropyCriterion", "constraint_range": null, "drop_worst_after": 0, "drop_worst_ratio": 0.0, "ignore_eos": false, "ignore_prefix_size": 0, "label_smoothing": 0.0, "reg_alpha": 1.0, "report_accuracy": false, "sample_patch_num": 196, "sentence_avg": false, "use_rdrop": true}, "hooks": [{"type": "BestCkptSaverHook", "metric_key": "bleu-4", "interval": 100}, {"type": "TextLoggerHook", "interval": 1}, {"type": "IterTimerHook"}, {"type": "EvaluationHook", "by_epoch": true, "interval": 1}]}, "evaluation": {"dataloader": {"batch_size_per_gpu": 4, "workers_per_gpu": 0}, "metrics": [{"type": "bleu", "eval_tokenized_bleu": false, "ref_name": "labels", "hyp_name": "caption"}]}, "preprocessor": []} | |||