Browse Source

add task preprocess

master
翎航 3 years ago
parent
commit
b889e64067
1 changed files with 7 additions and 5 deletions
  1. +7
    -5
      modelscope/preprocessors/ofa/visual_grounding.py

+ 7
- 5
modelscope/preprocessors/ofa/visual_grounding.py View File

@@ -60,7 +60,7 @@ class OfaVisualGroundingPreprocessor(OfaBasePreprocessor):
def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]:
image = self.get_img_pil(data[self.column_map['image']])
w, h = image.size
b_tgt = {
boxes_target = {
'boxes': [],
'labels': [],
'area': [],
@@ -69,13 +69,15 @@ class OfaVisualGroundingPreprocessor(OfaBasePreprocessor):
x0, y0, x1, y1 = data[self.column_map['region_coord']].strip().split(
',')
region = torch.tensor([float(x0), float(y0), float(x1), float(y1)])
b_tgt['boxes'] = torch.tensor(
boxes_target['boxes'] = torch.tensor(
[[float(x0), float(y0), float(x1),
float(y1)]])
b_tgt['labels'] = np.array([0])
b_tgt['area'] = [(float(x1) - float(x0)) * (float(y1) - float(y0))]
boxes_target['labels'] = np.array([0])
area = [(float(x1) - float(x0)) * (float(y1) - float(y0))]
boxes_target['area'] = torch.tensor(area)

patch_image, patch_boxes = self.positioning_transform(image, b_tgt)
patch_image, patch_boxes = self.positioning_transform(
image, boxes_target)
resize_h, resize_w = patch_boxes['size'][0], patch_boxes['size'][1]
quant_x0 = '<bin_{}>'.format(
int((patch_boxes['boxes'][0][0] * (self.num_bins - 1)).round()))


Loading…
Cancel
Save