Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9155437master
| @@ -2,24 +2,28 @@ from typing import Any, Dict, Optional, Union | |||
| import numpy as np | |||
| from modelscope.metainfo import Models | |||
| from modelscope.utils.constant import Tasks | |||
| from ...metainfo import Models | |||
| from ...utils.constant import Tasks | |||
| from ..base import Model, Tensor | |||
| from ..builder import MODELS | |||
| __all__ = ['StructBertForMaskedLM', 'VecoForMaskedLM'] | |||
| __all__ = ['BertForMaskedLM', 'StructBertForMaskedLM', 'VecoForMaskedLM'] | |||
| class AliceMindBaseForMaskedLM(Model): | |||
| class MaskedLanguageModelBase(Model): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| from sofa.utils.backend import AutoConfig, AutoModelForMaskedLM | |||
| self.model_dir = model_dir | |||
| super().__init__(model_dir, *args, **kwargs) | |||
| self.model = self.build_model() | |||
| self.config = AutoConfig.from_pretrained(model_dir) | |||
| self.model = AutoModelForMaskedLM.from_pretrained( | |||
| model_dir, config=self.config) | |||
| def build_model(): | |||
| raise NotImplementedError() | |||
| @property | |||
| def config(self): | |||
| if hasattr(self.model, 'config'): | |||
| return self.model.config | |||
| return None | |||
| def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, np.ndarray]: | |||
| """return the result by the model | |||
| @@ -38,14 +42,24 @@ class AliceMindBaseForMaskedLM(Model): | |||
| @MODELS.register_module(Tasks.fill_mask, module_name=Models.structbert) | |||
| class StructBertForMaskedLM(AliceMindBaseForMaskedLM): | |||
| # The StructBert for MaskedLM uses the same underlying model structure | |||
| # as the base model class. | |||
| pass | |||
| class StructBertForMaskedLM(MaskedLanguageModelBase): | |||
| def build_model(self): | |||
| from sofa import SbertForMaskedLM | |||
| return SbertForMaskedLM.from_pretrained(self.model_dir) | |||
| @MODELS.register_module(Tasks.fill_mask, module_name=Models.veco) | |||
| class VecoForMaskedLM(AliceMindBaseForMaskedLM): | |||
| # The Veco for MaskedLM uses the same underlying model structure | |||
| # as the base model class. | |||
| pass | |||
| class VecoForMaskedLM(MaskedLanguageModelBase): | |||
| def build_model(self): | |||
| from sofa import VecoForMaskedLM | |||
| return VecoForMaskedLM.from_pretrained(self.model_dir) | |||
| @MODELS.register_module(Tasks.fill_mask, module_name=Models.bert) | |||
| class BertForMaskedLM(MaskedLanguageModelBase): | |||
| def build_model(self): | |||
| from transformers import BertForMaskedLM | |||
| return BertForMaskedLM.from_pretrained(self.model_dir) | |||
| @@ -1,32 +1,34 @@ | |||
| import os | |||
| from typing import Dict, Optional, Union | |||
| from modelscope.metainfo import Pipelines | |||
| from modelscope.models import Model | |||
| from modelscope.models.nlp.masked_language_model import \ | |||
| AliceMindBaseForMaskedLM | |||
| from modelscope.preprocessors import FillMaskPreprocessor | |||
| from modelscope.utils.constant import Tasks | |||
| from ...metainfo import Pipelines | |||
| from ...models import Model | |||
| from ...models.nlp.masked_language_model import MaskedLanguageModelBase | |||
| from ...preprocessors import FillMaskPreprocessor | |||
| from ...utils.config import Config | |||
| from ...utils.constant import ModelFile, Tasks | |||
| from ..base import Pipeline, Tensor | |||
| from ..builder import PIPELINES | |||
| __all__ = ['FillMaskPipeline'] | |||
| _type_map = {'veco': 'roberta', 'sbert': 'bert'} | |||
| @PIPELINES.register_module(Tasks.fill_mask, module_name=Pipelines.fill_mask) | |||
| class FillMaskPipeline(Pipeline): | |||
| def __init__(self, | |||
| model: Union[AliceMindBaseForMaskedLM, str], | |||
| model: Union[MaskedLanguageModelBase, str], | |||
| preprocessor: Optional[FillMaskPreprocessor] = None, | |||
| **kwargs): | |||
| """use `model` and `preprocessor` to create a nlp fill mask pipeline for prediction | |||
| Args: | |||
| model (AliceMindBaseForMaskedLM): a model instance | |||
| model (MaskedLanguageModelBase): a model instance | |||
| preprocessor (FillMaskPreprocessor): a preprocessor instance | |||
| """ | |||
| fill_mask_model = model if isinstance( | |||
| model, AliceMindBaseForMaskedLM) else Model.from_pretrained(model) | |||
| model, MaskedLanguageModelBase) else Model.from_pretrained(model) | |||
| if preprocessor is None: | |||
| preprocessor = FillMaskPreprocessor( | |||
| fill_mask_model.model_dir, | |||
| @@ -34,11 +36,13 @@ class FillMaskPipeline(Pipeline): | |||
| second_sequence=None) | |||
| super().__init__(model=model, preprocessor=preprocessor, **kwargs) | |||
| self.preprocessor = preprocessor | |||
| self.config = Config.from_file( | |||
| os.path.join(fill_mask_model.model_dir, ModelFile.CONFIGURATION)) | |||
| self.tokenizer = preprocessor.tokenizer | |||
| self.mask_id = {'veco': 250001, 'sbert': 103} | |||
| self.mask_id = {'roberta': 250001, 'bert': 103} | |||
| self.rep_map = { | |||
| 'sbert': { | |||
| 'bert': { | |||
| '[unused0]': '', | |||
| '[PAD]': '', | |||
| '[unused1]': '', | |||
| @@ -48,7 +52,7 @@ class FillMaskPipeline(Pipeline): | |||
| '[CLS]': '', | |||
| '[UNK]': '' | |||
| }, | |||
| 'veco': { | |||
| 'roberta': { | |||
| r' +': ' ', | |||
| '<mask>': '<q>', | |||
| '<pad>': '', | |||
| @@ -72,7 +76,9 @@ class FillMaskPipeline(Pipeline): | |||
| input_ids = inputs['input_ids'].detach().numpy() | |||
| pred_ids = np.argmax(logits, axis=-1) | |||
| model_type = self.model.config.model_type | |||
| rst_ids = np.where(input_ids == self.mask_id[model_type], pred_ids, | |||
| process_type = model_type if model_type in self.mask_id else _type_map[ | |||
| model_type] | |||
| rst_ids = np.where(input_ids == self.mask_id[process_type], pred_ids, | |||
| input_ids) | |||
| def rep_tokens(string, rep_map): | |||
| @@ -82,12 +88,12 @@ class FillMaskPipeline(Pipeline): | |||
| pred_strings = [] | |||
| for ids in rst_ids: # batch | |||
| if self.model.config.vocab_size == 21128: # zh bert | |||
| if 'language' in self.config.model and self.config.model.language == 'zh': | |||
| pred_string = self.tokenizer.convert_ids_to_tokens(ids) | |||
| pred_string = ''.join(pred_string) | |||
| else: | |||
| pred_string = self.tokenizer.decode(ids) | |||
| pred_string = rep_tokens(pred_string, self.rep_map[model_type]) | |||
| pred_string = rep_tokens(pred_string, self.rep_map[process_type]) | |||
| pred_strings.append(pred_string) | |||
| return {'text': pred_strings} | |||
| @@ -192,14 +192,17 @@ class FillMaskPreprocessor(Preprocessor): | |||
| model_dir (str): model path | |||
| """ | |||
| super().__init__(*args, **kwargs) | |||
| from sofa.utils.backend import AutoTokenizer | |||
| self.model_dir = model_dir | |||
| self.first_sequence: str = kwargs.pop('first_sequence', | |||
| 'first_sequence') | |||
| self.sequence_length = kwargs.pop('sequence_length', 128) | |||
| self.tokenizer = AutoTokenizer.from_pretrained( | |||
| model_dir, use_fast=False) | |||
| try: | |||
| from transformers import AutoTokenizer | |||
| self.tokenizer = AutoTokenizer.from_pretrained(model_dir) | |||
| except KeyError: | |||
| from sofa.utils.backend import AutoTokenizer | |||
| self.tokenizer = AutoTokenizer.from_pretrained( | |||
| model_dir, use_fast=False) | |||
| @type_assert(object, str) | |||
| def __call__(self, data: str) -> Dict[str, Any]: | |||
| @@ -3,7 +3,8 @@ import unittest | |||
| from modelscope.hub.snapshot_download import snapshot_download | |||
| from modelscope.models import Model | |||
| from modelscope.models.nlp import StructBertForMaskedLM, VecoForMaskedLM | |||
| from modelscope.models.nlp import (BertForMaskedLM, StructBertForMaskedLM, | |||
| VecoForMaskedLM) | |||
| from modelscope.pipelines import FillMaskPipeline, pipeline | |||
| from modelscope.preprocessors import FillMaskPreprocessor | |||
| from modelscope.utils.constant import Tasks | |||
| @@ -16,6 +17,7 @@ class FillMaskTest(unittest.TestCase): | |||
| 'en': 'damo/nlp_structbert_fill-mask_english-large' | |||
| } | |||
| model_id_veco = 'damo/nlp_veco_fill-mask-large' | |||
| model_id_bert = 'damo/nlp_bert_fill-mask_chinese-base' | |||
| ori_texts = { | |||
| 'zh': | |||
| @@ -69,6 +71,20 @@ class FillMaskTest(unittest.TestCase): | |||
| f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n' | |||
| ) | |||
| # zh bert | |||
| language = 'zh' | |||
| model_dir = snapshot_download(self.model_id_bert) | |||
| preprocessor = FillMaskPreprocessor( | |||
| model_dir, first_sequence='sentence', second_sequence=None) | |||
| model = BertForMaskedLM(model_dir) | |||
| pipeline1 = FillMaskPipeline(model, preprocessor) | |||
| pipeline2 = pipeline( | |||
| Tasks.fill_mask, model=model, preprocessor=preprocessor) | |||
| ori_text = self.ori_texts[language] | |||
| test_input = self.test_inputs[language] | |||
| print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: ' | |||
| f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n') | |||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
| def test_run_with_model_from_modelhub(self): | |||
| # sbert | |||
| @@ -97,6 +113,18 @@ class FillMaskTest(unittest.TestCase): | |||
| print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: ' | |||
| f'{pipeline_ins(test_input)}\n') | |||
| # zh bert | |||
| model = Model.from_pretrained(self.model_id_bert) | |||
| preprocessor = FillMaskPreprocessor( | |||
| model.model_dir, first_sequence='sentence', second_sequence=None) | |||
| pipeline_ins = pipeline( | |||
| Tasks.fill_mask, model=model, preprocessor=preprocessor) | |||
| language = 'zh' | |||
| ori_text = self.ori_texts[language] | |||
| test_input = self.test_inputs[language] | |||
| print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: ' | |||
| f'{pipeline_ins(test_input)}\n') | |||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
| def test_run_with_model_name(self): | |||
| # veco | |||
| @@ -115,6 +143,12 @@ class FillMaskTest(unittest.TestCase): | |||
| f'\nori_text: {self.ori_texts[language]}\ninput: {self.test_inputs[language]}\npipeline: ' | |||
| f'{pipeline_ins(self.test_inputs[language])}\n') | |||
| # bert | |||
| pipeline_ins = pipeline(task=Tasks.fill_mask, model=self.model_id_bert) | |||
| print( | |||
| f'\nori_text: {self.ori_texts[language]}\ninput: {self.test_inputs[language]}\npipeline: ' | |||
| f'{pipeline_ins(self.test_inputs[language])}\n') | |||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
| def test_run_with_default_model(self): | |||
| pipeline_ins = pipeline(task=Tasks.fill_mask) | |||