| @@ -1,103 +0,0 @@ | |||||
| from typing import Any, Dict, Optional | |||||
| from modelscope.trainers.nlp.space.trainers.gen_trainer import MultiWOZTrainer | |||||
| from modelscope.utils.constant import Tasks | |||||
| from ...base import Model, Tensor | |||||
| from ...builder import MODELS | |||||
| from .model.generator import Generator | |||||
| from .model.model_base import ModelBase | |||||
| __all__ = ['DialogGenerationModel'] | |||||
| @MODELS.register_module( | |||||
| Tasks.dialog_generation, module_name=r'space-generation') | |||||
| class DialogGenerationModel(Model): | |||||
| def __init__(self, model_dir: str, *args, **kwargs): | |||||
| """initialize the test generation model from the `model_dir` path. | |||||
| Args: | |||||
| model_dir (str): the model path. | |||||
| model_cls (Optional[Any], optional): model loader, if None, use the | |||||
| default loader to load model weights, by default None. | |||||
| """ | |||||
| super().__init__(model_dir, *args, **kwargs) | |||||
| self.model_dir = model_dir | |||||
| self.text_field = kwargs.pop('text_field') | |||||
| self.config = kwargs.pop('config') | |||||
| self.generator = Generator.create(self.config, reader=self.text_field) | |||||
| self.model = ModelBase.create( | |||||
| model_dir=model_dir, | |||||
| config=self.config, | |||||
| reader=self.text_field, | |||||
| generator=self.generator) | |||||
| def to_tensor(array): | |||||
| """ | |||||
| numpy array -> tensor | |||||
| """ | |||||
| import torch | |||||
| array = torch.tensor(array) | |||||
| return array.cuda() if self.config.use_gpu else array | |||||
| self.trainer = MultiWOZTrainer( | |||||
| model=self.model, | |||||
| to_tensor=to_tensor, | |||||
| config=self.config, | |||||
| reader=self.text_field, | |||||
| evaluator=None) | |||||
| self.trainer.load() | |||||
| def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]: | |||||
| """return the result by the model | |||||
| Args: | |||||
| input (Dict[str, Any]): the preprocessed data | |||||
| Returns: | |||||
| Dict[str, np.ndarray]: results | |||||
| Example: | |||||
| { | |||||
| 'predictions': array([1]), # lable 0-negative 1-positive | |||||
| 'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32), | |||||
| 'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value | |||||
| } | |||||
| """ | |||||
| from numpy import array, float32 | |||||
| import torch | |||||
| # turn_1 = { | |||||
| # 'user': [ | |||||
| # 13, 1045, 2052, 2066, 1037, 10095, 2013, 3002, 2198, 1005, | |||||
| # 1055, 2267, 2000, 10733, 12570, 21713, 4487, 15474, 1012, 7 | |||||
| # ] | |||||
| # } | |||||
| # old_pv_turn_1 = {} | |||||
| turn_2 = { | |||||
| 'user': | |||||
| [13, 1045, 2215, 2000, 2681, 2044, 2459, 1024, 2321, 1012, 7] | |||||
| } | |||||
| old_pv_turn_2 = { | |||||
| 'labels': [[ | |||||
| 13, 1045, 2052, 2066, 1037, 10095, 2013, 3002, 2198, 1005, | |||||
| 1055, 2267, 2000, 10733, 12570, 21713, 4487, 15474, 1012, 7 | |||||
| ]], | |||||
| 'resp': [ | |||||
| 14, 1045, 2052, 2022, 3407, 2000, 2393, 2007, 2115, 5227, 1010, | |||||
| 2079, 2017, 2031, 1037, 2051, 2017, 2052, 2066, 2000, 2681, | |||||
| 2030, 7180, 2011, 1029, 8 | |||||
| ], | |||||
| 'bspn': [ | |||||
| 15, 43, 7688, 10733, 12570, 21713, 4487, 15474, 6712, 3002, | |||||
| 2198, 1005, 1055, 2267, 9 | |||||
| ], | |||||
| 'db': [19, 24, 21, 20], | |||||
| 'aspn': [16, 43, 48, 2681, 7180, 10] | |||||
| } | |||||
| pv_turn = self.trainer.forward(turn=turn_2, old_pv_turn=old_pv_turn_2) | |||||
| return pv_turn | |||||
| @@ -1,51 +0,0 @@ | |||||
| from typing import Any, Dict, Optional | |||||
| from modelscope.models.nlp import DialogGenerationModel | |||||
| from modelscope.preprocessors import DialogGenerationPreprocessor | |||||
| from modelscope.utils.constant import Tasks | |||||
| from ...base import Model, Tensor | |||||
| from ...builder import PIPELINES | |||||
| __all__ = ['DialogGenerationPipeline'] | |||||
| @PIPELINES.register_module( | |||||
| Tasks.dialog_generation, module_name=r'space-generation') | |||||
| class DialogGenerationPipeline(Model): | |||||
| def __init__(self, model: DialogGenerationModel, | |||||
| preprocessor: DialogGenerationPreprocessor, **kwargs): | |||||
| """use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | |||||
| Args: | |||||
| model (SequenceClassificationModel): a model instance | |||||
| preprocessor (SequenceClassificationPreprocessor): a preprocessor instance | |||||
| """ | |||||
| super().__init__(model=model, preprocessor=preprocessor, **kwargs) | |||||
| self.model = model | |||||
| self.tokenizer = preprocessor.tokenizer | |||||
| def postprocess(self, inputs: Dict[str, Tensor]) -> Dict[str, str]: | |||||
| """process the prediction results | |||||
| Args: | |||||
| inputs (Dict[str, Any]): _description_ | |||||
| Returns: | |||||
| Dict[str, str]: the prediction results | |||||
| """ | |||||
| vocab_size = len(self.tokenizer.vocab) | |||||
| pred_list = inputs['predictions'] | |||||
| pred_ids = pred_list[0][0].cpu().numpy().tolist() | |||||
| for j in range(len(pred_ids)): | |||||
| if pred_ids[j] >= vocab_size: | |||||
| pred_ids[j] = 100 | |||||
| pred = self.tokenizer.convert_ids_to_tokens(pred_ids) | |||||
| pred_string = ''.join(pred).replace( | |||||
| '##', | |||||
| '').split('[SEP]')[0].replace('[CLS]', | |||||
| '').replace('[SEP]', | |||||
| '').replace('[UNK]', '') | |||||
| return {'pred_string': pred_string} | |||||
| @@ -1,50 +0,0 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||||
| import os | |||||
| import uuid | |||||
| from typing import Any, Dict, Union | |||||
| from modelscope.preprocessors.space.fields.gen_field import \ | |||||
| MultiWOZBPETextField | |||||
| from modelscope.utils.config import Config | |||||
| from modelscope.utils.constant import Fields, InputFields | |||||
| from modelscope.utils.type_assert import type_assert | |||||
| from ..base import Preprocessor | |||||
| from ..builder import PREPROCESSORS | |||||
| __all__ = ['DialogGenerationPreprocessor'] | |||||
| @PREPROCESSORS.register_module(Fields.nlp, module_name=r'space-generation') | |||||
| class DialogGenerationPreprocessor(Preprocessor): | |||||
| def __init__(self, model_dir: str, *args, **kwargs): | |||||
| """preprocess the data via the vocab.txt from the `model_dir` path | |||||
| Args: | |||||
| model_dir (str): model path | |||||
| """ | |||||
| super().__init__(*args, **kwargs) | |||||
| self.model_dir: str = model_dir | |||||
| self.config = Config.from_file( | |||||
| os.path.join(self.model_dir, 'configuration.json')) | |||||
| self.text_field = MultiWOZBPETextField( | |||||
| self.model_dir, config=self.config) | |||||
| @type_assert(object, str) | |||||
| def __call__(self, data: str) -> Dict[str, Any]: | |||||
| """process the raw input data | |||||
| Args: | |||||
| data (str): a sentence | |||||
| Example: | |||||
| 'you are so handsome.' | |||||
| Returns: | |||||
| Dict[str, Any]: the preprocessed data | |||||
| """ | |||||
| idx = self.text_field.get_ids(data) | |||||
| return {'user_idx': idx} | |||||
| @@ -1,120 +0,0 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||||
| import os | |||||
| import os.path as osp | |||||
| import tempfile | |||||
| import unittest | |||||
| from modelscope.models.nlp import DialogGenerationModel | |||||
| from modelscope.pipelines import DialogGenerationPipeline, pipeline | |||||
| from modelscope.preprocessors import DialogGenerationPreprocessor | |||||
| def merge(info, result): | |||||
| return info | |||||
| class DialogGenerationTest(unittest.TestCase): | |||||
| test_case = { | |||||
| 'sng0073': { | |||||
| 'goal': { | |||||
| 'taxi': { | |||||
| 'info': { | |||||
| 'leaveat': '17:15', | |||||
| 'destination': 'pizza hut fen ditton', | |||||
| 'departure': "saint john's college" | |||||
| }, | |||||
| 'reqt': ['car', 'phone'], | |||||
| 'fail_info': {} | |||||
| } | |||||
| }, | |||||
| 'log': [{ | |||||
| 'user': | |||||
| "i would like a taxi from saint john 's college to pizza hut fen ditton .", | |||||
| 'user_delex': | |||||
| 'i would like a taxi from [value_departure] to [value_destination] .', | |||||
| 'resp': | |||||
| 'what time do you want to leave and what time do you want to arrive by ?', | |||||
| 'sys': | |||||
| 'what time do you want to leave and what time do you want to arrive by ?', | |||||
| 'pointer': '0,0,0,0,0,0', | |||||
| 'match': '', | |||||
| 'constraint': | |||||
| "[taxi] destination pizza hut fen ditton departure saint john 's college", | |||||
| 'cons_delex': '[taxi] destination departure', | |||||
| 'sys_act': '[taxi] [request] leave arrive', | |||||
| 'turn_num': 0, | |||||
| 'turn_domain': '[taxi]' | |||||
| }, { | |||||
| 'user': 'i want to leave after 17:15 .', | |||||
| 'user_delex': 'i want to leave after [value_leave] .', | |||||
| 'resp': | |||||
| 'booking completed ! your taxi will be [value_car] contact number is [value_phone]', | |||||
| 'sys': | |||||
| 'booking completed ! your taxi will be blue honda contact number is 07218068540', | |||||
| 'pointer': '0,0,0,0,0,0', | |||||
| 'match': '', | |||||
| 'constraint': | |||||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||||
| 'cons_delex': '[taxi] destination departure leave', | |||||
| 'sys_act': '[taxi] [inform] car phone', | |||||
| 'turn_num': 1, | |||||
| 'turn_domain': '[taxi]' | |||||
| }, { | |||||
| 'user': 'thank you for all the help ! i appreciate it .', | |||||
| 'user_delex': 'thank you for all the help ! i appreciate it .', | |||||
| 'resp': | |||||
| 'you are welcome . is there anything else i can help you with today ?', | |||||
| 'sys': | |||||
| 'you are welcome . is there anything else i can help you with today ?', | |||||
| 'pointer': '0,0,0,0,0,0', | |||||
| 'match': '', | |||||
| 'constraint': | |||||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||||
| 'cons_delex': '[taxi] destination departure leave', | |||||
| 'sys_act': '[general] [reqmore]', | |||||
| 'turn_num': 2, | |||||
| 'turn_domain': '[general]' | |||||
| }, { | |||||
| 'user': 'no , i am all set . have a nice day . bye .', | |||||
| 'user_delex': 'no , i am all set . have a nice day . bye .', | |||||
| 'resp': 'you too ! thank you', | |||||
| 'sys': 'you too ! thank you', | |||||
| 'pointer': '0,0,0,0,0,0', | |||||
| 'match': '', | |||||
| 'constraint': | |||||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||||
| 'cons_delex': '[taxi] destination departure leave', | |||||
| 'sys_act': '[general] [bye]', | |||||
| 'turn_num': 3, | |||||
| 'turn_domain': '[general]' | |||||
| }] | |||||
| } | |||||
| } | |||||
| def test_run(self): | |||||
| # modeldir = '/Users/yangliu/Desktop/space-dialog-generation' | |||||
| # | |||||
| # preprocessor = DialogGenerationPreprocessor(model_dir=modeldir) | |||||
| # model = DialogGenerationModel( | |||||
| # model_dir=modeldir, | |||||
| # text_field=preprocessor.text_field, | |||||
| # config=preprocessor.config) | |||||
| # print(model.forward(None)) | |||||
| # pipeline = DialogGenerationPipeline(model=model, preprocessor=preprocessor) | |||||
| # | |||||
| # history_dialog_info = {} | |||||
| # for step, item in enumerate(test_case['sng0073']['log']): | |||||
| # user_question = item['user'] | |||||
| # print('user: {}'.format(user_question)) | |||||
| # | |||||
| # # history_dialog_info = merge(history_dialog_info, | |||||
| # # result) if step > 0 else {} | |||||
| # result = pipeline(user_question, history=history_dialog_info) | |||||
| # # | |||||
| # # print('sys : {}'.format(result['pred_answer'])) | |||||
| print('test') | |||||
| if __name__ == '__main__': | |||||
| unittest.main() | |||||
| @@ -1,24 +0,0 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||||
| import unittest | |||||
| from maas_lib.preprocessors import DialogGenerationPreprocessor | |||||
| from maas_lib.utils.constant import Fields, InputFields | |||||
| from maas_lib.utils.logger import get_logger | |||||
| from tests.case.nlp.dialog_generation_case import test_case | |||||
| logger = get_logger() | |||||
| class DialogGenerationPreprocessorTest(unittest.TestCase): | |||||
| def test_tokenize(self): | |||||
| modeldir = '/Users/yangliu/Desktop/space-dialog-generation' | |||||
| processor = DialogGenerationPreprocessor(model_dir=modeldir) | |||||
| for item in test_case['sng0073']['log']: | |||||
| print(processor(item['user'])) | |||||
| if __name__ == '__main__': | |||||
| unittest.main() | |||||
| @@ -1,25 +0,0 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||||
| import unittest | |||||
| from maas_lib.preprocessors import DialogIntentPreprocessor | |||||
| from maas_lib.utils.constant import Fields, InputFields | |||||
| from maas_lib.utils.logger import get_logger | |||||
| from tests.case.nlp.dialog_intent_case import test_case | |||||
| logger = get_logger() | |||||
| class DialogGenerationPreprocessorTest(unittest.TestCase): | |||||
| def test_tokenize(self): | |||||
| modeldir = '/Users/yangliu/Desktop/space-dialog-intent' | |||||
| processor = DialogIntentPreprocessor(model_dir=modeldir) | |||||
| for item in test_case: | |||||
| print(item) | |||||
| print(processor(item)) | |||||
| if __name__ == '__main__': | |||||
| unittest.main() | |||||