| @@ -2,10 +2,11 @@ | |||||
| import hashlib | import hashlib | ||||
| import os | import os | ||||
| import requests | |||||
| from datetime import datetime | from datetime import datetime | ||||
| from typing import Optional | from typing import Optional | ||||
| import requests | |||||
| from modelscope.hub.api import ModelScopeConfig | from modelscope.hub.api import ModelScopeConfig | ||||
| from modelscope.hub.constants import (DEFAULT_MODELSCOPE_DOMAIN, | from modelscope.hub.constants import (DEFAULT_MODELSCOPE_DOMAIN, | ||||
| DEFAULT_MODELSCOPE_GROUP, | DEFAULT_MODELSCOPE_GROUP, | ||||
| @@ -10,6 +10,7 @@ from typing import Any, Dict, Generator, List, Mapping, Union | |||||
| import numpy as np | import numpy as np | ||||
| from modelscope.hub.utils.utils import create_library_statistics | |||||
| from modelscope.models.base import Model | from modelscope.models.base import Model | ||||
| from modelscope.msdatasets import MsDataset | from modelscope.msdatasets import MsDataset | ||||
| from modelscope.outputs import TASK_OUTPUTS | from modelscope.outputs import TASK_OUTPUTS | ||||
| @@ -23,7 +24,6 @@ from modelscope.utils.hub import read_config, snapshot_download | |||||
| from modelscope.utils.import_utils import is_tf_available, is_torch_available | from modelscope.utils.import_utils import is_tf_available, is_torch_available | ||||
| from modelscope.utils.logger import get_logger | from modelscope.utils.logger import get_logger | ||||
| from modelscope.utils.torch_utils import _find_free_port, _is_free_port | from modelscope.utils.torch_utils import _find_free_port, _is_free_port | ||||
| from modelscope.hub.utils.utils import create_library_statistics | |||||
| from .util import is_model, is_official_hub_path | from .util import is_model, is_official_hub_path | ||||
| if is_torch_available(): | if is_torch_available(): | ||||
| @@ -154,7 +154,7 @@ class Pipeline(ABC): | |||||
| # modelscope library developer will handle this function | # modelscope library developer will handle this function | ||||
| for single_model in self.models: | for single_model in self.models: | ||||
| if hasattr(single_model, 'name'): | if hasattr(single_model, 'name'): | ||||
| create_library_statistics("pipeline", single_model.name, None) | |||||
| create_library_statistics('pipeline', single_model.name, None) | |||||
| # place model to cpu or gpu | # place model to cpu or gpu | ||||
| if (self.model or (self.has_multiple_models and self.models[0])): | if (self.model or (self.has_multiple_models and self.models[0])): | ||||
| if not self._model_prepare: | if not self._model_prepare: | ||||
| @@ -14,8 +14,8 @@ from torch.utils.data import DataLoader, Dataset | |||||
| from torch.utils.data.dataloader import default_collate | from torch.utils.data.dataloader import default_collate | ||||
| from torch.utils.data.distributed import DistributedSampler | from torch.utils.data.distributed import DistributedSampler | ||||
| from modelscope.hub.utils.utils import create_library_statistics | |||||
| from modelscope.hub.snapshot_download import snapshot_download | from modelscope.hub.snapshot_download import snapshot_download | ||||
| from modelscope.hub.utils.utils import create_library_statistics | |||||
| from modelscope.metainfo import Trainers | from modelscope.metainfo import Trainers | ||||
| from modelscope.metrics import build_metric, task_default_metrics | from modelscope.metrics import build_metric, task_default_metrics | ||||
| from modelscope.models.base import Model, TorchModel | from modelscope.models.base import Model, TorchModel | ||||
| @@ -438,7 +438,7 @@ class EpochBasedTrainer(BaseTrainer): | |||||
| def train(self, checkpoint_path=None, *args, **kwargs): | def train(self, checkpoint_path=None, *args, **kwargs): | ||||
| self._mode = ModeKeys.TRAIN | self._mode = ModeKeys.TRAIN | ||||
| if hasattr(self.model, 'name'): | if hasattr(self.model, 'name'): | ||||
| create_library_statistics("train", self.model.name, None) | |||||
| create_library_statistics('train', self.model.name, None) | |||||
| if self.train_dataset is None: | if self.train_dataset is None: | ||||
| self.train_dataloader = self.get_train_dataloader() | self.train_dataloader = self.get_train_dataloader() | ||||
| @@ -460,7 +460,7 @@ class EpochBasedTrainer(BaseTrainer): | |||||
| def evaluate(self, checkpoint_path=None): | def evaluate(self, checkpoint_path=None): | ||||
| if hasattr(self.model, 'name'): | if hasattr(self.model, 'name'): | ||||
| create_library_statistics("evaluate", self.model.name, None) | |||||
| create_library_statistics('evaluate', self.model.name, None) | |||||
| if checkpoint_path is not None and os.path.isfile(checkpoint_path): | if checkpoint_path is not None and os.path.isfile(checkpoint_path): | ||||
| from modelscope.trainers.hooks import CheckpointHook | from modelscope.trainers.hooks import CheckpointHook | ||||
| CheckpointHook.load_checkpoint(checkpoint_path, self) | CheckpointHook.load_checkpoint(checkpoint_path, self) | ||||