| @@ -1,6 +1,3 @@ | |||
| echo "Testing envs" | |||
| printenv | |||
| echo "ENV END" | |||
| if [ "$MODELSCOPE_SDK_DEBUG" == "True" ]; then | |||
| pip install -r requirements/tests.txt | |||
| git config --global --add safe.directory /Maas-lib | |||
| @@ -23,7 +20,7 @@ if [ "$MODELSCOPE_SDK_DEBUG" == "True" ]; then | |||
| awk -F: '/^[^#]/ { print $1 }' requirements/multi-modal.txt | xargs -n 1 pip install -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html | |||
| awk -F: '/^[^#]/ { print $1 }' requirements/nlp.txt | xargs -n 1 pip install -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html | |||
| awk -F: '/^[^#]/ { print $1 }' requirements/science.txt | xargs -n 1 pip install -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html | |||
| pip install -r requirements/tests.txt | |||
| # test with install | |||
| python setup.py install | |||
| else | |||
| @@ -3,30 +3,32 @@ MODELSCOPE_CACHE_DIR_IN_CONTAINER=/modelscope_cache | |||
| CODE_DIR=$PWD | |||
| CODE_DIR_IN_CONTAINER=/Maas-lib | |||
| echo "$USER" | |||
| gpus='7 6 5 4 3 2 1 0' | |||
| cpu_sets='0-7 8-15 16-23 24-30 31-37 38-44 45-51 52-58' | |||
| gpus='0,1 2,3 4,5 6,7' | |||
| cpu_sets='45-58 31-44 16-30 0-15' | |||
| cpu_sets_arr=($cpu_sets) | |||
| is_get_file_lock=false | |||
| # export RUN_CASE_COMMAND='python tests/run.py --run_config tests/run_config.yaml' | |||
| CI_COMMAND=${CI_COMMAND:-bash .dev_scripts/ci_container_test.sh $RUN_CASE_BASE_COMMAND} | |||
| CI_COMMAND='bash .dev_scripts/ci_container_test.sh python tests/run.py --parallel 2 --run_config tests/run_config.yaml' | |||
| echo "ci command: $CI_COMMAND" | |||
| idx=0 | |||
| for gpu in $gpus | |||
| do | |||
| exec {lock_fd}>"/tmp/gpu$gpu" || exit 1 | |||
| flock -n "$lock_fd" || { echo "WARN: gpu $gpu is in use!" >&2; continue; } | |||
| flock -n "$lock_fd" || { echo "WARN: gpu $gpu is in use!" >&2; idx=$((idx+1)); continue; } | |||
| echo "get gpu lock $gpu" | |||
| CONTAINER_NAME="modelscope-ci-$gpu" | |||
| CONTAINER_NAME="modelscope-ci-$idx" | |||
| let is_get_file_lock=true | |||
| # pull image if there are update | |||
| docker pull ${IMAGE_NAME}:${IMAGE_VERSION} | |||
| if [ "$MODELSCOPE_SDK_DEBUG" == "True" ]; then | |||
| echo 'debugging' | |||
| docker run --rm --name $CONTAINER_NAME --shm-size=16gb \ | |||
| --cpuset-cpus=${cpu_sets_arr[$gpu]} \ | |||
| --gpus="device=$gpu" \ | |||
| --cpuset-cpus=${cpu_sets_arr[$idx]} \ | |||
| --gpus='"'"device=$gpu"'"' \ | |||
| -v $CODE_DIR:$CODE_DIR_IN_CONTAINER \ | |||
| -v $MODELSCOPE_CACHE:$MODELSCOPE_CACHE_DIR_IN_CONTAINER \ | |||
| -v $MODELSCOPE_HOME_CACHE/$gpu:/root \ | |||
| -v $MODELSCOPE_HOME_CACHE/$idx:/root \ | |||
| -v /home/admin/pre-commit:/home/admin/pre-commit \ | |||
| -e CI_TEST=True \ | |||
| -e TEST_LEVEL=$TEST_LEVEL \ | |||
| @@ -41,16 +43,15 @@ do | |||
| -e TEST_UPLOAD_MS_TOKEN=$TEST_UPLOAD_MS_TOKEN \ | |||
| -e MODEL_TAG_URL=$MODEL_TAG_URL \ | |||
| --workdir=$CODE_DIR_IN_CONTAINER \ | |||
| --net host \ | |||
| ${IMAGE_NAME}:${IMAGE_VERSION} \ | |||
| $CI_COMMAND | |||
| else | |||
| docker run --rm --name $CONTAINER_NAME --shm-size=16gb \ | |||
| --cpuset-cpus=${cpu_sets_arr[$gpu]} \ | |||
| --gpus="device=$gpu" \ | |||
| --cpuset-cpus=${cpu_sets_arr[$idx]} \ | |||
| --gpus='"'"device=$gpu"'"' \ | |||
| -v $CODE_DIR:$CODE_DIR_IN_CONTAINER \ | |||
| -v $MODELSCOPE_CACHE:$MODELSCOPE_CACHE_DIR_IN_CONTAINER \ | |||
| -v $MODELSCOPE_HOME_CACHE/$gpu:/root \ | |||
| -v $MODELSCOPE_HOME_CACHE/$idx:/root \ | |||
| -v /home/admin/pre-commit:/home/admin/pre-commit \ | |||
| -e CI_TEST=True \ | |||
| -e TEST_LEVEL=$TEST_LEVEL \ | |||
| @@ -64,7 +65,6 @@ do | |||
| -e TEST_UPLOAD_MS_TOKEN=$TEST_UPLOAD_MS_TOKEN \ | |||
| -e MODEL_TAG_URL=$MODEL_TAG_URL \ | |||
| --workdir=$CODE_DIR_IN_CONTAINER \ | |||
| --net host \ | |||
| ${IMAGE_NAME}:${IMAGE_VERSION} \ | |||
| $CI_COMMAND | |||
| fi | |||
| @@ -20,7 +20,6 @@ class MogFaceDetector(TorchModel): | |||
| def __init__(self, model_path, device='cuda'): | |||
| super().__init__(model_path) | |||
| torch.set_grad_enabled(False) | |||
| cudnn.benchmark = True | |||
| self.model_path = model_path | |||
| self.device = device | |||
| @@ -21,7 +21,6 @@ class MtcnnFaceDetector(TorchModel): | |||
| def __init__(self, model_path, device='cuda'): | |||
| super().__init__(model_path) | |||
| torch.set_grad_enabled(False) | |||
| cudnn.benchmark = True | |||
| self.model_path = model_path | |||
| self.device = device | |||
| @@ -18,7 +18,6 @@ class RetinaFaceDetection(TorchModel): | |||
| def __init__(self, model_path, device='cuda'): | |||
| super().__init__(model_path) | |||
| torch.set_grad_enabled(False) | |||
| cudnn.benchmark = True | |||
| self.model_path = model_path | |||
| self.cfg = Config.from_file( | |||
| @@ -24,7 +24,6 @@ class UlfdFaceDetector(TorchModel): | |||
| def __init__(self, model_path, device='cuda'): | |||
| super().__init__(model_path) | |||
| torch.set_grad_enabled(False) | |||
| cudnn.benchmark = True | |||
| self.model_path = model_path | |||
| self.device = device | |||
| @@ -24,7 +24,6 @@ class FacialExpressionRecognition(TorchModel): | |||
| def __init__(self, model_path, device='cuda'): | |||
| super().__init__(model_path) | |||
| torch.set_grad_enabled(False) | |||
| cudnn.benchmark = True | |||
| self.model_path = model_path | |||
| self.device = device | |||
| @@ -31,7 +31,6 @@ cfg_re50 = { | |||
| class RetinaFaceDetection(object): | |||
| def __init__(self, model_path, device='cuda'): | |||
| torch.set_grad_enabled(False) | |||
| cudnn.benchmark = True | |||
| self.model_path = model_path | |||
| self.device = device | |||
| @@ -3,11 +3,13 @@ | |||
| import argparse | |||
| import datetime | |||
| import math | |||
| import multiprocessing | |||
| import os | |||
| import subprocess | |||
| import sys | |||
| import tempfile | |||
| import time | |||
| import unittest | |||
| from fnmatch import fnmatch | |||
| from multiprocessing.managers import BaseManager | |||
| @@ -158,6 +160,21 @@ def run_command_with_popen(cmd): | |||
| sys.stdout.write(line) | |||
| def async_run_command_with_popen(cmd, device_id): | |||
| logger.info('Worker id: %s args: %s' % (device_id, cmd)) | |||
| env = os.environ.copy() | |||
| env['CUDA_VISIBLE_DEVICES'] = '%s' % device_id | |||
| sub_process = subprocess.Popen( | |||
| cmd, | |||
| stdout=subprocess.PIPE, | |||
| stderr=subprocess.STDOUT, | |||
| bufsize=1, | |||
| universal_newlines=True, | |||
| env=env, | |||
| encoding='utf8') | |||
| return sub_process | |||
| def save_test_result(df, args): | |||
| if args.result_dir is not None: | |||
| file_name = str(int(datetime.datetime.now().timestamp() * 1000)) | |||
| @@ -199,6 +216,108 @@ def install_requirements(requirements): | |||
| run_command(cmd) | |||
| def wait_for_free_worker(workers): | |||
| while True: | |||
| for idx, worker in enumerate(workers): | |||
| if worker is None: | |||
| logger.info('return free worker: %s' % (idx)) | |||
| return idx | |||
| if worker.poll() is None: # running, get output | |||
| for line in iter(worker.stdout.readline, ''): | |||
| if line != '': | |||
| sys.stdout.write(line) | |||
| else: | |||
| break | |||
| else: # worker process completed. | |||
| logger.info('Process end: %s' % (idx)) | |||
| workers[idx] = None | |||
| return idx | |||
| time.sleep(0.001) | |||
| def wait_for_workers(workers): | |||
| while True: | |||
| for idx, worker in enumerate(workers): | |||
| if worker is None: | |||
| continue | |||
| # check worker is completed. | |||
| if worker.poll() is None: | |||
| for line in iter(worker.stdout.readline, ''): | |||
| if line != '': | |||
| sys.stdout.write(line) | |||
| else: | |||
| break | |||
| else: | |||
| logger.info('Process idx: %s end!' % (idx)) | |||
| workers[idx] = None | |||
| is_all_completed = True | |||
| for idx, worker in enumerate(workers): | |||
| if worker is not None: | |||
| is_all_completed = False | |||
| break | |||
| if is_all_completed: | |||
| logger.info('All sub porcess is completed!') | |||
| break | |||
| time.sleep(0.001) | |||
| def parallel_run_case_in_env(env_name, env, test_suite_env_map, isolated_cases, | |||
| result_dir, parallel): | |||
| logger.info('Running case in env: %s' % env_name) | |||
| # install requirements and deps # run_config['envs'][env] | |||
| if 'requirements' in env: | |||
| install_requirements(env['requirements']) | |||
| if 'dependencies' in env: | |||
| install_packages(env['dependencies']) | |||
| # case worker processes | |||
| worker_processes = [None] * parallel | |||
| for test_suite_file in isolated_cases: # run case in subprocess | |||
| if test_suite_file in test_suite_env_map and test_suite_env_map[ | |||
| test_suite_file] == env_name: | |||
| cmd = [ | |||
| 'python', | |||
| 'tests/run.py', | |||
| '--pattern', | |||
| test_suite_file, | |||
| '--result_dir', | |||
| result_dir, | |||
| ] | |||
| worker_idx = wait_for_free_worker(worker_processes) | |||
| worker_process = async_run_command_with_popen(cmd, worker_idx) | |||
| os.set_blocking(worker_process.stdout.fileno(), False) | |||
| worker_processes[worker_idx] = worker_process | |||
| else: | |||
| pass # case not in run list. | |||
| # run remain cases in a process. | |||
| remain_suite_files = [] | |||
| for k, v in test_suite_env_map.items(): | |||
| if k not in isolated_cases and v == env_name: | |||
| remain_suite_files.append(k) | |||
| if len(remain_suite_files) == 0: | |||
| return | |||
| # roughly split case in parallel | |||
| part_count = math.ceil(len(remain_suite_files) / parallel) | |||
| suites_chunks = [ | |||
| remain_suite_files[x:x + part_count] | |||
| for x in range(0, len(remain_suite_files), part_count) | |||
| ] | |||
| for suites_chunk in suites_chunks: | |||
| worker_idx = wait_for_free_worker(worker_processes) | |||
| cmd = [ | |||
| 'python', 'tests/run.py', '--result_dir', result_dir, '--suites' | |||
| ] | |||
| for suite in suites_chunk: | |||
| cmd.append(suite) | |||
| worker_process = async_run_command_with_popen(cmd, worker_idx) | |||
| os.set_blocking(worker_process.stdout.fileno(), False) | |||
| worker_processes[worker_idx] = worker_process | |||
| wait_for_workers(worker_processes) | |||
| def run_case_in_env(env_name, env, test_suite_env_map, isolated_cases, | |||
| result_dir): | |||
| # install requirements and deps # run_config['envs'][env] | |||
| @@ -264,8 +383,9 @@ def run_in_subprocess(args): | |||
| with tempfile.TemporaryDirectory() as temp_result_dir: | |||
| for env in set(test_suite_env_map.values()): | |||
| run_case_in_env(env, run_config['envs'][env], test_suite_env_map, | |||
| isolated_cases, temp_result_dir) | |||
| parallel_run_case_in_env(env, run_config['envs'][env], | |||
| test_suite_env_map, isolated_cases, | |||
| temp_result_dir, args.parallel) | |||
| result_dfs = [] | |||
| result_path = Path(temp_result_dir) | |||
| @@ -312,6 +432,10 @@ class TimeCostTextTestResult(TextTestResult): | |||
| self.stream.writeln( | |||
| 'Test case: %s stop at: %s, cost time: %s(seconds)' % | |||
| (test.test_full_name, test.stop_time, test.time_cost)) | |||
| if torch.cuda.is_available( | |||
| ) and test.time_cost > 5.0: # print nvidia-smi | |||
| cmd = ['nvidia-smi'] | |||
| run_command_with_popen(cmd) | |||
| super(TimeCostTextTestResult, self).stopTest(test) | |||
| def addSuccess(self, test): | |||
| @@ -383,6 +507,8 @@ def main(args): | |||
| os.path.abspath(args.test_dir), args.pattern, args.list_tests) | |||
| if not args.list_tests: | |||
| result = runner.run(test_suite) | |||
| logger.info('Running case completed, pid: %s, suites: %s' % | |||
| (os.getpid(), args.suites)) | |||
| result = collect_test_results(result) | |||
| df = test_cases_result_to_df(result) | |||
| if args.result_dir is not None: | |||
| @@ -417,6 +543,12 @@ if __name__ == '__main__': | |||
| '--result_dir', | |||
| default=None, | |||
| help='Save result to directory, internal use only') | |||
| parser.add_argument( | |||
| '--parallel', | |||
| default=1, | |||
| type=int, | |||
| help='Set case parallels, default single process, set with gpu number.' | |||
| ) | |||
| parser.add_argument( | |||
| '--suites', | |||
| nargs='*', | |||
| @@ -1,5 +1,5 @@ | |||
| # isolate cases in env, we can install different dependencies in each env. | |||
| isolated: # test cases that may require excessive anmount of GPU memory, which will be executed in dedicagted process. | |||
| isolated: # test cases that may require excessive anmount of GPU memory or run long time, which will be executed in dedicagted process. | |||
| - test_text_to_speech.py | |||
| - test_multi_modal_embedding.py | |||
| - test_ofa_tasks.py | |||
| @@ -12,6 +12,33 @@ isolated: # test cases that may require excessive anmount of GPU memory, which | |||
| - test_segmentation_pipeline.py | |||
| - test_image_inpainting.py | |||
| - test_mglm_text_summarization.py | |||
| - test_team_transfer_trainer.py | |||
| - test_image_denoise_trainer.py | |||
| - test_dialog_intent_trainer.py | |||
| - test_finetune_mplug.py | |||
| - test_image_instance_segmentation_trainer.py | |||
| - test_image_portrait_enhancement_trainer.py | |||
| - test_translation_trainer.py | |||
| - test_unifold.py | |||
| - test_automatic_post_editing.py | |||
| - test_mplug_tasks.py | |||
| - test_movie_scene_segmentation.py | |||
| - test_body_3d_keypoints.py | |||
| - test_finetune_text_generation.py | |||
| - test_clip_trainer.py | |||
| - test_ofa_trainer.py | |||
| - test_fill_mask.py | |||
| - test_hand_2d_keypoints.py | |||
| - test_referring_video_object_segmentation.py | |||
| - test_easycv_trainer_hand_2d_keypoints.py | |||
| - test_card_detection_scrfd_trainer.py | |||
| - test_referring_video_object_segmentation_trainer.py | |||
| - test_person_image_cartoon.py | |||
| - test_image_style_transfer.py | |||
| - test_ocr_detection.py | |||
| - test_automatic_speech_recognition.py | |||
| - test_image_matting.py | |||
| - test_skin_retouching.py | |||
| envs: | |||
| default: # default env, case not in other env will in default, pytorch. | |||
| @@ -94,7 +94,7 @@ class TestDialogIntentTrainer(unittest.TestCase): | |||
| cfg.Model.update(config['Model']) | |||
| if self.debugging: | |||
| cfg.Trainer.save_checkpoint = False | |||
| cfg.Trainer.num_epochs = 5 | |||
| cfg.Trainer.num_epochs = 1 | |||
| cfg.Trainer.batch_size_label = 64 | |||
| return cfg | |||