| @@ -80,7 +80,7 @@ class Pipeline(ABC): | |||
| self.preprocessor = preprocessor | |||
| def __call__(self, input: Union[Input, List[Input]], *args, | |||
| **post_kwargs) -> Union[Dict[str, Any], Generator]: | |||
| **kwargs) -> Union[Dict[str, Any], Generator]: | |||
| # model provider should leave it as it is | |||
| # modelscope library developer will handle this function | |||
| @@ -89,24 +89,41 @@ class Pipeline(ABC): | |||
| if isinstance(input, list): | |||
| output = [] | |||
| for ele in input: | |||
| output.append(self._process_single(ele, *args, **post_kwargs)) | |||
| output.append(self._process_single(ele, *args, **kwargs)) | |||
| elif isinstance(input, PyDataset): | |||
| return self._process_iterator(input, *args, **post_kwargs) | |||
| return self._process_iterator(input, *args, **kwargs) | |||
| else: | |||
| output = self._process_single(input, *args, **post_kwargs) | |||
| output = self._process_single(input, *args, **kwargs) | |||
| return output | |||
| def _process_iterator(self, input: Input, *args, **post_kwargs): | |||
| def _process_iterator(self, input: Input, *args, **kwargs): | |||
| for ele in input: | |||
| yield self._process_single(ele, *args, **post_kwargs) | |||
| yield self._process_single(ele, *args, **kwargs) | |||
| def _process_single(self, input: Input, *args, | |||
| **post_kwargs) -> Dict[str, Any]: | |||
| out = self.preprocess(input) | |||
| out = self.forward(out) | |||
| out = self.postprocess(out, **post_kwargs) | |||
| def _sanitize_parameters(self, **pipeline_parameters): | |||
| """ | |||
| this method should sanitize the keyword args to preprocessor params, | |||
| forward params and postprocess params on '__call__' or '_process_single' method | |||
| considering to be a normal classmethod with default implementation / output | |||
| Returns: | |||
| Dict[str, str]: preprocess_params = {} | |||
| Dict[str, str]: forward_params = {} | |||
| Dict[str, str]: postprocess_params = pipeline_parameters | |||
| """ | |||
| # raise NotImplementedError("_sanitize_parameters not implemented") | |||
| return {}, {}, pipeline_parameters | |||
| def _process_single(self, input: Input, *args, **kwargs) -> Dict[str, Any]: | |||
| # sanitize the parameters | |||
| preprocess_params, forward_params, postprocess_params = self._sanitize_parameters( | |||
| **kwargs) | |||
| out = self.preprocess(input, **preprocess_params) | |||
| out = self.forward(out, **forward_params) | |||
| out = self.postprocess(out, **postprocess_params) | |||
| self._check_output(out) | |||
| return out | |||
| @@ -126,23 +143,25 @@ class Pipeline(ABC): | |||
| raise ValueError(f'expected output keys are {output_keys}, ' | |||
| f'those {missing_keys} are missing') | |||
| def preprocess(self, inputs: Input) -> Dict[str, Any]: | |||
| def preprocess(self, inputs: Input, **preprocess_params) -> Dict[str, Any]: | |||
| """ Provide default implementation based on preprocess_cfg and user can reimplement it | |||
| """ | |||
| assert self.preprocessor is not None, 'preprocess method should be implemented' | |||
| assert not isinstance(self.preprocessor, List),\ | |||
| 'default implementation does not support using multiple preprocessors.' | |||
| return self.preprocessor(inputs) | |||
| return self.preprocessor(inputs, **preprocess_params) | |||
| def forward(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
| def forward(self, inputs: Dict[str, Any], | |||
| **forward_params) -> Dict[str, Any]: | |||
| """ Provide default implementation using self.model and user can reimplement it | |||
| """ | |||
| assert self.model is not None, 'forward method should be implemented' | |||
| assert not self.has_multiple_models, 'default implementation does not support multiple models in a pipeline.' | |||
| return self.model(inputs) | |||
| return self.model(inputs, **forward_params) | |||
| @abstractmethod | |||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
| def postprocess(self, inputs: Dict[str, Any], | |||
| **postprocess_params) -> Dict[str, Any]: | |||
| """ If current pipeline support model reuse, common postprocess | |||
| code should be write here. | |||
| @@ -39,18 +39,32 @@ class ZeroShotClassificationPipeline(Pipeline): | |||
| self.entailment_id = 0 | |||
| self.contradiction_id = 2 | |||
| self.candidate_labels = kwargs.pop('candidate_labels') | |||
| self.hypothesis_template = kwargs.pop('hypothesis_template', '{}') | |||
| self.multi_label = kwargs.pop('multi_label', False) | |||
| if preprocessor is None: | |||
| preprocessor = ZeroShotClassificationPreprocessor( | |||
| sc_model.model_dir, | |||
| candidate_labels=self.candidate_labels, | |||
| hypothesis_template=self.hypothesis_template) | |||
| sc_model.model_dir) | |||
| super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | |||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
| def _sanitize_parameters(self, **kwargs): | |||
| preprocess_params = {} | |||
| postprocess_params = {} | |||
| if 'candidate_labels' in kwargs: | |||
| candidate_labels = kwargs.pop('candidate_labels') | |||
| preprocess_params['candidate_labels'] = candidate_labels | |||
| postprocess_params['candidate_labels'] = candidate_labels | |||
| else: | |||
| raise ValueError('You must include at least one label.') | |||
| preprocess_params['hypothesis_template'] = kwargs.pop( | |||
| 'hypothesis_template', '{}') | |||
| postprocess_params['multi_label'] = kwargs.pop('multi_label', False) | |||
| return preprocess_params, {}, postprocess_params | |||
| def postprocess(self, | |||
| inputs: Dict[str, Any], | |||
| candidate_labels, | |||
| multi_label=False) -> Dict[str, Any]: | |||
| """process the prediction results | |||
| Args: | |||
| @@ -61,8 +75,7 @@ class ZeroShotClassificationPipeline(Pipeline): | |||
| """ | |||
| logits = inputs['logits'] | |||
| if self.multi_label or len(self.candidate_labels) == 1: | |||
| if multi_label or len(candidate_labels) == 1: | |||
| logits = logits[..., [self.contradiction_id, self.entailment_id]] | |||
| scores = softmax(logits, axis=-1)[..., 1] | |||
| else: | |||
| @@ -71,7 +84,7 @@ class ZeroShotClassificationPipeline(Pipeline): | |||
| reversed_index = list(reversed(scores.argsort())) | |||
| result = { | |||
| 'labels': [self.candidate_labels[i] for i in reversed_index], | |||
| 'labels': [candidate_labels[i] for i in reversed_index], | |||
| 'scores': [scores[i].item() for i in reversed_index], | |||
| } | |||
| return result | |||
| @@ -196,12 +196,11 @@ class ZeroShotClassificationPreprocessor(Preprocessor): | |||
| from sofa import SbertTokenizer | |||
| self.model_dir: str = model_dir | |||
| self.sequence_length = kwargs.pop('sequence_length', 512) | |||
| self.candidate_labels = kwargs.pop('candidate_labels') | |||
| self.hypothesis_template = kwargs.pop('hypothesis_template', '{}') | |||
| self.tokenizer = SbertTokenizer.from_pretrained(self.model_dir) | |||
| @type_assert(object, str) | |||
| def __call__(self, data: str) -> Dict[str, Any]: | |||
| def __call__(self, data: str, hypothesis_template: str, | |||
| candidate_labels: list) -> Dict[str, Any]: | |||
| """process the raw input data | |||
| Args: | |||
| @@ -212,8 +211,8 @@ class ZeroShotClassificationPreprocessor(Preprocessor): | |||
| Returns: | |||
| Dict[str, Any]: the preprocessed data | |||
| """ | |||
| pairs = [[data, self.hypothesis_template.format(label)] | |||
| for label in self.candidate_labels] | |||
| pairs = [[data, hypothesis_template.format(label)] | |||
| for label in candidate_labels] | |||
| features = self.tokenizer( | |||
| pairs, | |||
| @@ -13,53 +13,47 @@ from modelscope.utils.constant import Tasks | |||
| class ZeroShotClassificationTest(unittest.TestCase): | |||
| model_id = 'damo/nlp_structbert_zero-shot-classification_chinese-base' | |||
| sentence = '全新突破 解放军运20版空中加油机曝光' | |||
| candidate_labels = ['文化', '体育', '娱乐', '财经', '家居', '汽车', '教育', '科技', '军事'] | |||
| labels = ['文化', '体育', '娱乐', '财经', '家居', '汽车', '教育', '科技', '军事'] | |||
| template = '这篇文章的标题是{}' | |||
| def test_run_from_local(self): | |||
| cache_path = snapshot_download(self.model_id) | |||
| tokenizer = ZeroShotClassificationPreprocessor( | |||
| cache_path, candidate_labels=self.candidate_labels) | |||
| tokenizer = ZeroShotClassificationPreprocessor(cache_path) | |||
| model = BertForZeroShotClassification(cache_path, tokenizer=tokenizer) | |||
| pipeline1 = ZeroShotClassificationPipeline( | |||
| model, | |||
| preprocessor=tokenizer, | |||
| candidate_labels=self.candidate_labels, | |||
| ) | |||
| model, preprocessor=tokenizer) | |||
| pipeline2 = pipeline( | |||
| Tasks.zero_shot_classification, | |||
| model=model, | |||
| preprocessor=tokenizer, | |||
| candidate_labels=self.candidate_labels) | |||
| preprocessor=tokenizer) | |||
| print(f'sentence: {self.sentence}\n' | |||
| f'pipeline1:{pipeline1(input=self.sentence)}') | |||
| print( | |||
| f'sentence: {self.sentence}\n' | |||
| f'pipeline1:{pipeline1(input=self.sentence,candidate_labels=self.labels)}' | |||
| ) | |||
| print() | |||
| print(f'sentence: {self.sentence}\n' | |||
| f'pipeline2: {pipeline2(input=self.sentence)}') | |||
| print( | |||
| f'sentence: {self.sentence}\n' | |||
| f'pipeline2: {pipeline2(self.sentence,candidate_labels=self.labels,hypothesis_template=self.template)}' | |||
| ) | |||
| def test_run_with_model_from_modelhub(self): | |||
| model = Model.from_pretrained(self.model_id) | |||
| tokenizer = ZeroShotClassificationPreprocessor( | |||
| model.model_dir, candidate_labels=self.candidate_labels) | |||
| tokenizer = ZeroShotClassificationPreprocessor(model.model_dir) | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.zero_shot_classification, | |||
| model=model, | |||
| preprocessor=tokenizer, | |||
| candidate_labels=self.candidate_labels) | |||
| print(pipeline_ins(input=self.sentence)) | |||
| preprocessor=tokenizer) | |||
| print(pipeline_ins(input=self.sentence, candidate_labels=self.labels)) | |||
| def test_run_with_model_name(self): | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.zero_shot_classification, | |||
| model=self.model_id, | |||
| candidate_labels=self.candidate_labels) | |||
| print(pipeline_ins(input=self.sentence)) | |||
| task=Tasks.zero_shot_classification, model=self.model_id) | |||
| print(pipeline_ins(input=self.sentence, candidate_labels=self.labels)) | |||
| def test_run_with_default_model(self): | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.zero_shot_classification, | |||
| candidate_labels=self.candidate_labels) | |||
| print(pipeline_ins(input=self.sentence)) | |||
| pipeline_ins = pipeline(task=Tasks.zero_shot_classification) | |||
| print(pipeline_ins(input=self.sentence, candidate_labels=self.labels)) | |||
| if __name__ == '__main__': | |||