|
|
|
@@ -0,0 +1,52 @@ |
|
|
|
# Copyright (c) Alibaba, Inc. and its affiliates. |
|
|
|
import unittest |
|
|
|
|
|
|
|
from maas_hub.snapshot_download import snapshot_download |
|
|
|
|
|
|
|
from modelscope.models import Model |
|
|
|
from modelscope.models.nlp import SbertForSentimentClassification |
|
|
|
from modelscope.pipelines import SentimentClassificationPipeline, pipeline |
|
|
|
from modelscope.preprocessors import SentimentClassificationPreprocessor |
|
|
|
from modelscope.utils.constant import Tasks |
|
|
|
|
|
|
|
|
|
|
|
class SentimentClassificationTest(unittest.TestCase): |
|
|
|
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base' |
|
|
|
sentence1 = '四川商务职业学院和四川财经职业学院哪个好?' |
|
|
|
|
|
|
|
def test_run_from_local(self): |
|
|
|
cache_path = snapshot_download(self.model_id) |
|
|
|
tokenizer = SentimentClassificationPreprocessor(cache_path) |
|
|
|
model = SbertForSentimentClassification( |
|
|
|
cache_path, tokenizer=tokenizer) |
|
|
|
pipeline1 = SentimentClassificationPipeline( |
|
|
|
model, preprocessor=tokenizer) |
|
|
|
pipeline2 = pipeline( |
|
|
|
Tasks.sentence_similarity, model=model, preprocessor=tokenizer) |
|
|
|
print(f'sentence1: {self.sentence1}\n' |
|
|
|
f'pipeline1:{pipeline1(input=self.sentence1)}') |
|
|
|
print() |
|
|
|
print(f'sentence1: {self.sentence1}\n' |
|
|
|
f'pipeline1: {pipeline2(input=self.sentence1)}') |
|
|
|
|
|
|
|
def test_run_with_model_from_modelhub(self): |
|
|
|
model = Model.from_pretrained(self.model_id) |
|
|
|
tokenizer = SentimentClassificationPreprocessor(model.model_dir) |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.sentence_similarity, |
|
|
|
model=model, |
|
|
|
preprocessor=tokenizer) |
|
|
|
print(pipeline_ins(input=self.sentence1)) |
|
|
|
|
|
|
|
def test_run_with_model_name(self): |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.sentence_similarity, model=self.model_id) |
|
|
|
print(pipeline_ins(input=self.sentence1)) |
|
|
|
|
|
|
|
def test_run_with_default_model(self): |
|
|
|
pipeline_ins = pipeline(task=Tasks.sentence_similarity) |
|
|
|
print(pipeline_ins(input=self.sentence1)) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
unittest.main() |