| @@ -1,7 +1,7 @@ | |||||
| modelscope.pydatasets package | |||||
| modelscope.msdatasets package | |||||
| ============================= | ============================= | ||||
| .. automodule:: modelscope.pydatasets | |||||
| .. automodule:: modelscope.msdatasets | |||||
| :members: | :members: | ||||
| :undoc-members: | :undoc-members: | ||||
| :show-inheritance: | :show-inheritance: | ||||
| @@ -9,10 +9,10 @@ modelscope.pydatasets package | |||||
| Submodules | Submodules | ||||
| ---------- | ---------- | ||||
| modelscope.pydatasets.py\_dataset module | |||||
| modelscope.msdatasets.ms\_dataset module | |||||
| ---------------------------------------- | ---------------------------------------- | ||||
| .. automodule:: modelscope.pydatasets.py_dataset | |||||
| .. automodule:: modelscope.msdatasets.ms_dataset | |||||
| :members: | :members: | ||||
| :undoc-members: | :undoc-members: | ||||
| :show-inheritance: | :show-inheritance: | ||||
| @@ -16,7 +16,7 @@ Subpackages | |||||
| modelscope.models | modelscope.models | ||||
| modelscope.pipelines | modelscope.pipelines | ||||
| modelscope.preprocessors | modelscope.preprocessors | ||||
| modelscope.pydatasets | |||||
| modelscope.msdatasets | |||||
| modelscope.trainers | modelscope.trainers | ||||
| modelscope.utils | modelscope.utils | ||||
| @@ -3,7 +3,7 @@ | |||||
| ## python环境配置 | ## python环境配置 | ||||
| 首先,参考[文档](https://docs.anaconda.com/anaconda/install/) 安装配置Anaconda环境 | 首先,参考[文档](https://docs.anaconda.com/anaconda/install/) 安装配置Anaconda环境 | ||||
| 安装完成后,执行如下命令为maas library创建对应的python环境。 | |||||
| 安装完成后,执行如下命令为modelscope library创建对应的python环境。 | |||||
| ```shell | ```shell | ||||
| conda create -n modelscope python=3.6 | conda create -n modelscope python=3.6 | ||||
| conda activate modelscope | conda activate modelscope | ||||
| @@ -105,15 +105,15 @@ import cv2 | |||||
| import os.path as osp | import os.path as osp | ||||
| from modelscope.pipelines import pipeline | from modelscope.pipelines import pipeline | ||||
| from modelscope.utils.constant import Tasks | from modelscope.utils.constant import Tasks | ||||
| from modelscope.pydatasets import PyDataset | |||||
| from modelscope.msdatasets import MsDataset | |||||
| # 使用图像url构建PyDataset,此处也可通过 input_location = '/dir/to/images' 来使用本地文件夹 | |||||
| # 使用图像url构建MsDataset,此处也可通过 input_location = '/dir/to/images' 来使用本地文件夹 | |||||
| input_location = [ | input_location = [ | ||||
| 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png' | 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png' | ||||
| ] | ] | ||||
| dataset = PyDataset.load(input_location, target='image') | |||||
| dataset = MsDataset.load(input_location, target='image') | |||||
| img_matting = pipeline(Tasks.image_matting, model='damo/image-matting-person') | img_matting = pipeline(Tasks.image_matting, model='damo/image-matting-person') | ||||
| # 输入为PyDataset时,输出的结果为迭代器 | |||||
| # 输入为MsDataset时,输出的结果为迭代器 | |||||
| result = img_matting(dataset) | result = img_matting(dataset) | ||||
| cv2.imwrite('result.png', next(result)['output_png']) | cv2.imwrite('result.png', next(result)['output_png']) | ||||
| print(f'Output written to {osp.abspath("result.png")}') | print(f'Output written to {osp.abspath("result.png")}') | ||||
| @@ -187,7 +187,7 @@ def get_file_download_url(model_id: str, file_path: str, revision: str): | |||||
| """ | """ | ||||
| Format file download url according to `model_id`, `revision` and `file_path`. | Format file download url according to `model_id`, `revision` and `file_path`. | ||||
| e.g., Given `model_id=john/bert`, `revision=master`, `file_path=README.md`, | e.g., Given `model_id=john/bert`, `revision=master`, `file_path=README.md`, | ||||
| the resulted download url is: https://maas.co/api/v1/models/john/bert/repo?Revision=master&FilePath=README.md | |||||
| the resulted download url is: https://modelscope.co/api/v1/models/john/bert/repo?Revision=master&FilePath=README.md | |||||
| """ | """ | ||||
| download_url_template = '{endpoint}/api/v1/models/{model_id}/repo?Revision={revision}&FilePath={file_path}' | download_url_template = '{endpoint}/api/v1/models/{model_id}/repo?Revision={revision}&FilePath={file_path}' | ||||
| return download_url_template.format( | return download_url_template.format( | ||||
| @@ -21,9 +21,11 @@ class Models(object): | |||||
| sambert_hifi_16k = 'sambert-hifi-16k' | sambert_hifi_16k = 'sambert-hifi-16k' | ||||
| generic_tts_frontend = 'generic-tts-frontend' | generic_tts_frontend = 'generic-tts-frontend' | ||||
| hifigan16k = 'hifigan16k' | hifigan16k = 'hifigan16k' | ||||
| kws_kwsbp = 'kws-kwsbp' | |||||
| # multi-modal models | # multi-modal models | ||||
| ofa = 'ofa' | ofa = 'ofa' | ||||
| clip = 'clip-multi-modal-embedding' | |||||
| class Pipelines(object): | class Pipelines(object): | ||||
| @@ -56,9 +58,11 @@ class Pipelines(object): | |||||
| # audio tasks | # audio tasks | ||||
| sambert_hifigan_16k_tts = 'sambert-hifigan-16k-tts' | sambert_hifigan_16k_tts = 'sambert-hifigan-16k-tts' | ||||
| speech_dfsmn_aec_psm_16k = 'speech-dfsmn-aec-psm-16k' | speech_dfsmn_aec_psm_16k = 'speech-dfsmn-aec-psm-16k' | ||||
| kws_kwsbp = 'kws-kwsbp' | |||||
| # multi-modal tasks | # multi-modal tasks | ||||
| image_caption = 'image-caption' | image_caption = 'image-caption' | ||||
| multi_modal_embedding = 'multi-modal-embedding' | |||||
| class Trainers(object): | class Trainers(object): | ||||
| @@ -98,6 +102,7 @@ class Preprocessors(object): | |||||
| # audio preprocessor | # audio preprocessor | ||||
| linear_aec_fbank = 'linear-aec-fbank' | linear_aec_fbank = 'linear-aec-fbank' | ||||
| text_to_tacotron_symbols = 'text-to-tacotron-symbols' | text_to_tacotron_symbols = 'text-to-tacotron-symbols' | ||||
| wav_to_lists = 'wav-to-lists' | |||||
| # multi-modal | # multi-modal | ||||
| ofa_image_caption = 'ofa-image-caption' | ofa_image_caption = 'ofa-image-caption' | ||||
| @@ -1,10 +1,11 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | # Copyright (c) Alibaba, Inc. and its affiliates. | ||||
| from .audio.kws import GenericKeyWordSpotting | |||||
| from .audio.tts.am import SambertNetHifi16k | from .audio.tts.am import SambertNetHifi16k | ||||
| from .audio.tts.vocoder import Hifigan16k | from .audio.tts.vocoder import Hifigan16k | ||||
| from .base import Model | from .base import Model | ||||
| from .builder import MODELS, build_model | from .builder import MODELS, build_model | ||||
| from .multi_model import OfaForImageCaptioning | |||||
| from .multi_modal import OfaForImageCaptioning | |||||
| from .nlp import (BertForSequenceClassification, SbertForNLI, | from .nlp import (BertForSequenceClassification, SbertForNLI, | ||||
| SbertForSentenceSimilarity, SbertForSentimentClassification, | SbertForSentenceSimilarity, SbertForSentimentClassification, | ||||
| SbertForTokenClassification, StructBertForMaskedLM, | SbertForTokenClassification, StructBertForMaskedLM, | ||||
| @@ -0,0 +1 @@ | |||||
| from .generic_key_word_spotting import * # noqa F403 | |||||
| @@ -0,0 +1,30 @@ | |||||
| import os | |||||
| from typing import Any, Dict | |||||
| from modelscope.metainfo import Models | |||||
| from modelscope.models.base import Model | |||||
| from modelscope.models.builder import MODELS | |||||
| from modelscope.utils.constant import Tasks | |||||
| __all__ = ['GenericKeyWordSpotting'] | |||||
| @MODELS.register_module(Tasks.key_word_spotting, module_name=Models.kws_kwsbp) | |||||
| class GenericKeyWordSpotting(Model): | |||||
| def __init__(self, model_dir: str, *args, **kwargs): | |||||
| """initialize the info of model. | |||||
| Args: | |||||
| model_dir (str): the model path. | |||||
| """ | |||||
| self.model_cfg = { | |||||
| 'model_workspace': model_dir, | |||||
| 'config_path': os.path.join(model_dir, 'config.yaml') | |||||
| } | |||||
| def forward(self) -> Dict[str, Any]: | |||||
| """return the info of the model | |||||
| """ | |||||
| return self.model_cfg | |||||
| @@ -1 +1,2 @@ | |||||
| from .clip.clip_model import CLIPForMultiModalEmbedding | |||||
| from .image_captioning_model import OfaForImageCaptioning | from .image_captioning_model import OfaForImageCaptioning | ||||
| @@ -0,0 +1,26 @@ | |||||
| import torch.nn as nn | |||||
| from transformers import BertConfig, BertForMaskedLM | |||||
| class TextTransformer(nn.Module): | |||||
| def __init__(self, config_dict, feat_dim=768): | |||||
| super(TextTransformer, self).__init__() | |||||
| bert_config = BertConfig.from_dict(config_dict) | |||||
| self.bert = BertForMaskedLM(bert_config).bert | |||||
| self.projector = nn.Linear( | |||||
| bert_config.hidden_size, feat_dim, bias=False) | |||||
| def forward(self, input_ids, attention_mask): | |||||
| trans_features = { | |||||
| 'input_ids': input_ids, | |||||
| 'attention_mask': attention_mask | |||||
| } | |||||
| output_states = self.bert(**trans_features, return_dict=False) | |||||
| output_tokens = output_states[0] | |||||
| cls_tokens = output_tokens[:, 0, :] | |||||
| return self.projector(cls_tokens) | |||||
| @@ -0,0 +1,158 @@ | |||||
| import os.path as osp | |||||
| from typing import Any, Dict | |||||
| import json | |||||
| import numpy as np | |||||
| import torch | |||||
| import torch.nn as nn | |||||
| import torch.nn.functional as F | |||||
| from PIL import Image | |||||
| from tokenizers import BertWordPieceTokenizer | |||||
| from torchvision.transforms import Compose, Normalize, Resize, ToTensor | |||||
| from modelscope.metainfo import Models | |||||
| from modelscope.models.base import Model | |||||
| from modelscope.models.builder import MODELS | |||||
| from modelscope.models.multi_modal.clip.clip_bert import TextTransformer | |||||
| from modelscope.models.multi_modal.clip.clip_vit import VisionTransformer | |||||
| from modelscope.utils.constant import Tasks | |||||
| from modelscope.utils.logger import get_logger | |||||
| logger = get_logger() | |||||
| __all__ = ['CLIPForMultiModalEmbedding'] | |||||
| class CLIPModel(nn.Module): | |||||
| def __init__(self, model_dir): | |||||
| super(CLIPModel, self).__init__() | |||||
| # including vision config and text config | |||||
| model_config = json.load( | |||||
| open('{}/encoder_config.json'.format(model_dir))) | |||||
| # vision encoder | |||||
| vision_config = model_config['vision_config'] | |||||
| self.img_size = vision_config['input_resolution'] | |||||
| self.vision_encoder = VisionTransformer( | |||||
| input_resolution=self.img_size, | |||||
| patch_size=vision_config['patch_size'], | |||||
| width=vision_config['width'], | |||||
| layers=vision_config['layers'], | |||||
| heads=vision_config['heads'], | |||||
| output_dim=vision_config['feat_dim']) | |||||
| # text encoder | |||||
| text_config = model_config['text_config'] | |||||
| self.text_encoder = TextTransformer( | |||||
| text_config['bert_config'], feat_dim=text_config['feat_dim']) | |||||
| def forward(self, input_data, input_type): | |||||
| if input_type == 'img': | |||||
| img_embedding = self.vision_encoder(input_data) | |||||
| img_embedding = F.normalize(img_embedding, p=2.0, dim=1) | |||||
| return img_embedding | |||||
| elif input_type == 'text': | |||||
| text_ids_tensor, text_mask_tensor = input_data | |||||
| text_embedding = self.text_encoder(text_ids_tensor, | |||||
| text_mask_tensor) | |||||
| text_embedding = F.normalize(text_embedding, p=2.0, dim=1) | |||||
| return text_embedding | |||||
| else: | |||||
| raise ValueError('Unknown input type') | |||||
| @MODELS.register_module(Tasks.multi_modal_embedding, module_name=Models.clip) | |||||
| class CLIPForMultiModalEmbedding(Model): | |||||
| def __init__(self, model_dir, device_id=-1): | |||||
| super().__init__(model_dir=model_dir, device_id=device_id) | |||||
| self.clip_model = CLIPModel(model_dir=model_dir) | |||||
| pretrained_params = torch.load( | |||||
| '{}/pytorch_model.bin'.format(model_dir), 'cpu') | |||||
| self.clip_model.load_state_dict(pretrained_params) | |||||
| self.clip_model.eval() | |||||
| self.device_id = device_id | |||||
| if self.device_id >= 0: | |||||
| self.clip_model.to('cuda:{}'.format(self.device_id)) | |||||
| logger.info('Use GPU: {}'.format(self.device_id)) | |||||
| else: | |||||
| logger.info('Use CPU for inference') | |||||
| # image preprocessor | |||||
| norm_op = Normalize((0.48145466, 0.4578275, 0.40821073), | |||||
| (0.26862954, 0.26130258, 0.27577711)) | |||||
| self.img_preprocessor = Compose([ | |||||
| Resize((self.clip_model.img_size, self.clip_model.img_size), | |||||
| interpolation=Image.BICUBIC), | |||||
| ToTensor(), norm_op | |||||
| ]) | |||||
| # text tokenizer | |||||
| vocab_path = '{}/vocab.txt'.format(model_dir) | |||||
| self.text_tokenizer = BertWordPieceTokenizer( | |||||
| vocab_path, lowercase=False) | |||||
| self.text_tokenizer.enable_truncation(max_length=30) | |||||
| def tokenize_text(self, text_str): | |||||
| tokens = self.text_tokenizer.encode(text_str) | |||||
| max_tokens = 30 | |||||
| text_ids_tensor = torch.zeros((1, max_tokens)).long() | |||||
| text_mask_tensor = torch.zeros((1, max_tokens)) | |||||
| text_ids, text_mask = tokens.ids, tokens.attention_mask | |||||
| text_ids_tensor[0, 0:len(text_ids)] = torch.tensor(text_ids) | |||||
| text_mask_tensor[0, 0:len(text_mask)] = torch.tensor(text_mask) | |||||
| return text_ids_tensor, text_mask_tensor | |||||
| def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: | |||||
| output = {'img_embedding': None, 'text_embedding': None} | |||||
| if 'img' in input and input['img'] is not None: | |||||
| input_img = input['img'] | |||||
| if isinstance(input_img, Image.Image): | |||||
| img_tensor = self.img_preprocessor(input_img)[None, ...] | |||||
| elif isinstance(input_img, np.ndarray): | |||||
| if len(input_img.shape) == 2: | |||||
| input_img = cv2.cvtColor(input_img, cv2.COLOR_GRAY2BGR) | |||||
| input_img = input_img[:, :, ::-1] # in rgb order | |||||
| input_img = Image.fromarray( | |||||
| input_img.astype('uint8')).convert('RGB') | |||||
| img_tensor = self.img_preprocessor(input_img)[None, ...] | |||||
| else: | |||||
| raise TypeError( | |||||
| f'img should be either PIL.Image or np.array, but got {type(input_img)}' | |||||
| ) | |||||
| if self.device_id >= 0: | |||||
| img_tensor = img_tensor.to('cuda:{}'.format(self.device_id)) | |||||
| img_embedding = self.clip_model( | |||||
| input_data=img_tensor, input_type='img') | |||||
| output['img_embedding'] = img_embedding.data.cpu().numpy() | |||||
| if 'text' in input and input['text'] is not None: | |||||
| text_str = input['text'] | |||||
| if isinstance(text_str, str): | |||||
| text_ids_tensor, text_mask_tensor = self.tokenize_text( | |||||
| text_str) | |||||
| else: | |||||
| raise TypeError( | |||||
| f'text should be str, but got {type(text_str)}') | |||||
| if self.device_id >= 0: | |||||
| text_ids_tensor = text_ids_tensor.to('cuda:{}'.format( | |||||
| self.device_id)) | |||||
| text_mask_tensor = text_mask_tensor.to('cuda:{}'.format( | |||||
| self.device_id)) | |||||
| text_embedding = self.clip_model( | |||||
| input_data=(text_ids_tensor, text_mask_tensor), | |||||
| input_type='text') | |||||
| output['text_embedding'] = text_embedding.data.cpu().numpy() | |||||
| return output | |||||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||||
| return inputs | |||||
| @@ -0,0 +1,121 @@ | |||||
| # Copyright 2021 The OpenAI CLIP Authors. All rights reserved. | |||||
| from collections import OrderedDict | |||||
| from typing import Tuple, Union | |||||
| import numpy as np | |||||
| import torch | |||||
| import torch.nn.functional as F | |||||
| from torch import nn | |||||
| class LayerNorm(nn.LayerNorm): | |||||
| """Subclass torch's LayerNorm to handle fp16.""" | |||||
| def forward(self, x: torch.Tensor): | |||||
| orig_type = x.dtype | |||||
| ret = super().forward(x.type(torch.float32)) | |||||
| return ret.type(orig_type) | |||||
| class QuickGELU(nn.Module): | |||||
| def forward(self, x: torch.Tensor): | |||||
| return x * torch.sigmoid(1.702 * x) | |||||
| class ResidualAttentionBlock(nn.Module): | |||||
| def __init__(self, | |||||
| d_model: int, | |||||
| n_head: int, | |||||
| attn_mask: torch.Tensor = None): | |||||
| super().__init__() | |||||
| self.attn = nn.MultiheadAttention(d_model, n_head) | |||||
| self.ln_1 = LayerNorm(d_model) | |||||
| self.mlp = nn.Sequential( | |||||
| OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)), | |||||
| ('gelu', QuickGELU()), | |||||
| ('c_proj', nn.Linear(d_model * 4, d_model))])) | |||||
| self.ln_2 = LayerNorm(d_model) | |||||
| self.attn_mask = attn_mask | |||||
| def attention(self, x: torch.Tensor): | |||||
| self.attn_mask = self.attn_mask.to( | |||||
| dtype=x.dtype, | |||||
| device=x.device) if self.attn_mask is not None else None | |||||
| return self.attn( | |||||
| x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |||||
| def forward(self, x: torch.Tensor): | |||||
| x = x + self.attention(self.ln_1(x)) | |||||
| x = x + self.mlp(self.ln_2(x)) | |||||
| return x | |||||
| class Transformer(nn.Module): | |||||
| def __init__(self, | |||||
| width: int, | |||||
| layers: int, | |||||
| heads: int, | |||||
| attn_mask: torch.Tensor = None): | |||||
| super().__init__() | |||||
| self.width = width | |||||
| self.layers = layers | |||||
| self.resblocks = nn.Sequential(*[ | |||||
| ResidualAttentionBlock(width, heads, attn_mask) | |||||
| for _ in range(layers) | |||||
| ]) | |||||
| def forward(self, x: torch.Tensor): | |||||
| return self.resblocks(x) | |||||
| class VisionTransformer(nn.Module): | |||||
| def __init__(self, input_resolution: int, patch_size: int, width: int, | |||||
| layers: int, heads: int, output_dim: int): | |||||
| super().__init__() | |||||
| self.input_resolution = input_resolution | |||||
| self.output_dim = output_dim | |||||
| self.conv1 = nn.Conv2d( | |||||
| in_channels=3, | |||||
| out_channels=width, | |||||
| kernel_size=patch_size, | |||||
| stride=patch_size, | |||||
| bias=False) | |||||
| scale = width**-0.5 | |||||
| self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |||||
| self.positional_embedding = nn.Parameter(scale * torch.randn( | |||||
| (input_resolution // patch_size)**2 + 1, width)) | |||||
| self.ln_pre = LayerNorm(width) | |||||
| self.transformer = Transformer(width, layers, heads) | |||||
| self.ln_post = LayerNorm(width) | |||||
| self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |||||
| def forward(self, x: torch.Tensor): | |||||
| x = self.conv1(x) # shape = [*, width, grid, grid] | |||||
| x = x.reshape(x.shape[0], x.shape[1], | |||||
| -1) # shape = [*, width, grid ** 2] | |||||
| x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |||||
| class_embeddings = self.class_embedding.to(x.dtype) + \ | |||||
| torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device) | |||||
| x = torch.cat([class_embeddings, x], dim=1) | |||||
| x = x + self.positional_embedding.to(x.dtype) | |||||
| x = self.ln_pre(x) | |||||
| x = x.permute(1, 0, 2) # NLD -> LND | |||||
| x = self.transformer(x) | |||||
| x = x.permute(1, 0, 2) # LND -> NLD | |||||
| x = self.ln_post(x[:, 0, :]) | |||||
| if self.proj is not None: | |||||
| x = x @ self.proj | |||||
| return x | |||||
| @@ -0,0 +1 @@ | |||||
| from .ms_dataset import MsDataset | |||||
| @@ -10,8 +10,8 @@ from datasets.packaged_modules import _PACKAGED_DATASETS_MODULES | |||||
| from datasets.utils.file_utils import (is_relative_path, | from datasets.utils.file_utils import (is_relative_path, | ||||
| relative_to_absolute_path) | relative_to_absolute_path) | ||||
| from modelscope.pydatasets.config import MS_DATASETS_CACHE | |||||
| from modelscope.pydatasets.utils.ms_api import MsApi | |||||
| from modelscope.msdatasets.config import MS_DATASETS_CACHE | |||||
| from modelscope.msdatasets.utils.ms_api import MsApi | |||||
| from modelscope.utils.constant import Hubs | from modelscope.utils.constant import Hubs | ||||
| from modelscope.utils.logger import get_logger | from modelscope.utils.logger import get_logger | ||||
| @@ -28,9 +28,9 @@ def format_list(para) -> List: | |||||
| return para | return para | ||||
| class PyDataset: | |||||
| class MsDataset: | |||||
| _hf_ds = None # holds the underlying HuggingFace Dataset | _hf_ds = None # holds the underlying HuggingFace Dataset | ||||
| """A PyDataset backed by hugging face Dataset.""" | |||||
| """A MsDataset backed by hugging face Dataset.""" | |||||
| def __init__(self, hf_ds: Dataset, target: Optional[str] = None): | def __init__(self, hf_ds: Dataset, target: Optional[str] = None): | ||||
| self._hf_ds = hf_ds | self._hf_ds = hf_ds | ||||
| @@ -49,7 +49,7 @@ class PyDataset: | |||||
| @classmethod | @classmethod | ||||
| def from_hf_dataset(cls, | def from_hf_dataset(cls, | ||||
| hf_ds: Dataset, | hf_ds: Dataset, | ||||
| target: str = None) -> Union[dict, 'PyDataset']: | |||||
| target: str = None) -> Union[dict, 'MsDataset']: | |||||
| if isinstance(hf_ds, Dataset): | if isinstance(hf_ds, Dataset): | ||||
| return cls(hf_ds, target) | return cls(hf_ds, target) | ||||
| if len(hf_ds.keys()) == 1: | if len(hf_ds.keys()) == 1: | ||||
| @@ -68,8 +68,8 @@ class PyDataset: | |||||
| data_files: Optional[Union[str, Sequence[str], | data_files: Optional[Union[str, Sequence[str], | ||||
| Mapping[str, Union[str, | Mapping[str, Union[str, | ||||
| Sequence[str]]]]] = None | Sequence[str]]]]] = None | ||||
| ) -> Union[dict, 'PyDataset']: | |||||
| """Load a PyDataset from the ModelScope Hub, Hugging Face Hub, urls, or a local dataset. | |||||
| ) -> Union[dict, 'MsDataset']: | |||||
| """Load a MsDataset from the ModelScope Hub, Hugging Face Hub, urls, or a local dataset. | |||||
| Args: | Args: | ||||
| dataset_name (str): Path or name of the dataset. | dataset_name (str): Path or name of the dataset. | ||||
| @@ -82,7 +82,7 @@ class PyDataset: | |||||
| hub (Hubs, optional): When loading from a remote hub, where it is from | hub (Hubs, optional): When loading from a remote hub, where it is from | ||||
| Returns: | Returns: | ||||
| PyDataset (obj:`PyDataset`): PyDataset object for a certain dataset. | |||||
| MsDataset (obj:`MsDataset`): MsDataset object for a certain dataset. | |||||
| """ | """ | ||||
| if hub == Hubs.huggingface: | if hub == Hubs.huggingface: | ||||
| dataset = hf_load_dataset( | dataset = hf_load_dataset( | ||||
| @@ -92,9 +92,9 @@ class PyDataset: | |||||
| split=split, | split=split, | ||||
| data_dir=data_dir, | data_dir=data_dir, | ||||
| data_files=data_files) | data_files=data_files) | ||||
| return PyDataset.from_hf_dataset(dataset, target=target) | |||||
| return MsDataset.from_hf_dataset(dataset, target=target) | |||||
| else: | else: | ||||
| return PyDataset._load_ms_dataset( | |||||
| return MsDataset._load_ms_dataset( | |||||
| dataset_name, | dataset_name, | ||||
| target=target, | target=target, | ||||
| subset_name=subset_name, | subset_name=subset_name, | ||||
| @@ -114,7 +114,7 @@ class PyDataset: | |||||
| data_files: Optional[Union[str, Sequence[str], | data_files: Optional[Union[str, Sequence[str], | ||||
| Mapping[str, Union[str, | Mapping[str, Union[str, | ||||
| Sequence[str]]]]] = None | Sequence[str]]]]] = None | ||||
| ) -> Union[dict, 'PyDataset']: | |||||
| ) -> Union[dict, 'MsDataset']: | |||||
| if isinstance(dataset_name, str): | if isinstance(dataset_name, str): | ||||
| use_hf = False | use_hf = False | ||||
| if dataset_name in _PACKAGED_DATASETS_MODULES or os.path.isdir(dataset_name) or \ | if dataset_name in _PACKAGED_DATASETS_MODULES or os.path.isdir(dataset_name) or \ | ||||
| @@ -153,7 +153,7 @@ class PyDataset: | |||||
| else: | else: | ||||
| raise TypeError('path must be a str or a list, but got' | raise TypeError('path must be a str or a list, but got' | ||||
| f' {type(dataset_name)}') | f' {type(dataset_name)}') | ||||
| return PyDataset.from_hf_dataset(dataset, target=target) | |||||
| return MsDataset.from_hf_dataset(dataset, target=target) | |||||
| def to_torch_dataset_with_processors( | def to_torch_dataset_with_processors( | ||||
| self, | self, | ||||
| @@ -4,7 +4,7 @@ from typing import Optional | |||||
| import requests | import requests | ||||
| from modelscope.pydatasets.config import (DOWNLOADED_DATASETS_PATH, | |||||
| from modelscope.msdatasets.config import (DOWNLOADED_DATASETS_PATH, | |||||
| MS_HUB_ENDPOINT) | MS_HUB_ENDPOINT) | ||||
| from modelscope.utils.logger import get_logger | from modelscope.utils.logger import get_logger | ||||
| @@ -1,2 +1,3 @@ | |||||
| from .kws_kwsbp_pipeline import * # noqa F403 | |||||
| from .linear_aec_pipeline import LinearAECPipeline | from .linear_aec_pipeline import LinearAECPipeline | ||||
| from .text_to_speech_pipeline import * # noqa F403 | from .text_to_speech_pipeline import * # noqa F403 | ||||
| @@ -0,0 +1,449 @@ | |||||
| import io | |||||
| import os | |||||
| import shutil | |||||
| import stat | |||||
| import subprocess | |||||
| from typing import Any, Dict, List | |||||
| from modelscope.metainfo import Pipelines | |||||
| from modelscope.models import Model | |||||
| from modelscope.pipelines.base import Pipeline | |||||
| from modelscope.pipelines.builder import PIPELINES | |||||
| from modelscope.preprocessors import WavToLists | |||||
| from modelscope.utils.constant import Tasks | |||||
| __all__ = ['KeyWordSpottingKwsbpPipeline'] | |||||
| @PIPELINES.register_module( | |||||
| Tasks.key_word_spotting, module_name=Pipelines.kws_kwsbp) | |||||
| class KeyWordSpottingKwsbpPipeline(Pipeline): | |||||
| """KWS Pipeline - key word spotting decoding | |||||
| """ | |||||
| def __init__(self, | |||||
| config_file: str = None, | |||||
| model: Model = None, | |||||
| preprocessor: WavToLists = None, | |||||
| **kwargs): | |||||
| """use `model` and `preprocessor` to create a kws pipeline for prediction | |||||
| """ | |||||
| super().__init__( | |||||
| config_file=config_file, | |||||
| model=model, | |||||
| preprocessor=preprocessor, | |||||
| **kwargs) | |||||
| assert model is not None, 'kws model should be provided' | |||||
| assert preprocessor is not None, 'preprocessor is none' | |||||
| self._preprocessor = preprocessor | |||||
| self._model = model | |||||
| def __call__(self, kws_type: str, wav_path: List[str]) -> Dict[str, Any]: | |||||
| assert kws_type in ['wav', 'pos_testsets', 'neg_testsets', | |||||
| 'roc'], f'kws_type {kws_type} is invalid' | |||||
| output = self._preprocessor.forward(self._model.forward(), kws_type, | |||||
| wav_path) | |||||
| output = self.forward(output) | |||||
| rst = self.postprocess(output) | |||||
| return rst | |||||
| def forward(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||||
| """Decoding | |||||
| """ | |||||
| # will generate kws result into dump/dump.JOB.log | |||||
| out = self._run_with_kwsbp(inputs) | |||||
| return out | |||||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||||
| """process the kws results | |||||
| """ | |||||
| pos_result_json = {} | |||||
| neg_result_json = {} | |||||
| if inputs['kws_set'] in ['wav', 'pos_testsets', 'roc']: | |||||
| self._parse_dump_log(pos_result_json, inputs['pos_dump_path']) | |||||
| if inputs['kws_set'] in ['neg_testsets', 'roc']: | |||||
| self._parse_dump_log(neg_result_json, inputs['neg_dump_path']) | |||||
| """ | |||||
| result_json format example: | |||||
| { | |||||
| "wav_count": 450, | |||||
| "keywords": ["小云小云"], | |||||
| "wav_time": 3560.999999, | |||||
| "detected": [ | |||||
| { | |||||
| "xxx.wav": { | |||||
| "confidence": "0.990368", | |||||
| "keyword": "小云小云" | |||||
| } | |||||
| }, | |||||
| { | |||||
| "yyy.wav": { | |||||
| "confidence": "0.990368", | |||||
| "keyword": "小云小云" | |||||
| } | |||||
| }, | |||||
| ...... | |||||
| ], | |||||
| "detected_count": 429, | |||||
| "rejected_count": 21, | |||||
| "rejected": [ | |||||
| "yyy.wav", | |||||
| "zzz.wav", | |||||
| ...... | |||||
| ] | |||||
| } | |||||
| """ | |||||
| rst_dict = {'kws_set': inputs['kws_set']} | |||||
| # parsing the result of wav | |||||
| if inputs['kws_set'] == 'wav': | |||||
| rst_dict['wav_count'] = pos_result_json['wav_count'] = inputs[ | |||||
| 'pos_wav_count'] | |||||
| rst_dict['wav_time'] = round(pos_result_json['wav_time'], 6) | |||||
| if pos_result_json['detected_count'] == 1: | |||||
| rst_dict['keywords'] = pos_result_json['keywords'] | |||||
| rst_dict['detected'] = True | |||||
| wav_file_name = os.path.basename(inputs['pos_wav_path']) | |||||
| rst_dict['confidence'] = float(pos_result_json['detected'][0] | |||||
| [wav_file_name]['confidence']) | |||||
| else: | |||||
| rst_dict['detected'] = False | |||||
| # parsing the result of pos_tests | |||||
| elif inputs['kws_set'] == 'pos_testsets': | |||||
| rst_dict['wav_count'] = pos_result_json['wav_count'] = inputs[ | |||||
| 'pos_wav_count'] | |||||
| rst_dict['wav_time'] = round(pos_result_json['wav_time'], 6) | |||||
| if pos_result_json.__contains__('keywords'): | |||||
| rst_dict['keywords'] = pos_result_json['keywords'] | |||||
| rst_dict['recall'] = round( | |||||
| pos_result_json['detected_count'] / rst_dict['wav_count'], 6) | |||||
| if pos_result_json.__contains__('detected_count'): | |||||
| rst_dict['detected_count'] = pos_result_json['detected_count'] | |||||
| if pos_result_json.__contains__('rejected_count'): | |||||
| rst_dict['rejected_count'] = pos_result_json['rejected_count'] | |||||
| if pos_result_json.__contains__('rejected'): | |||||
| rst_dict['rejected'] = pos_result_json['rejected'] | |||||
| # parsing the result of neg_tests | |||||
| elif inputs['kws_set'] == 'neg_testsets': | |||||
| rst_dict['wav_count'] = neg_result_json['wav_count'] = inputs[ | |||||
| 'neg_wav_count'] | |||||
| rst_dict['wav_time'] = round(neg_result_json['wav_time'], 6) | |||||
| if neg_result_json.__contains__('keywords'): | |||||
| rst_dict['keywords'] = neg_result_json['keywords'] | |||||
| rst_dict['fa_rate'] = 0.0 | |||||
| rst_dict['fa_per_hour'] = 0.0 | |||||
| if neg_result_json.__contains__('detected_count'): | |||||
| rst_dict['detected_count'] = neg_result_json['detected_count'] | |||||
| rst_dict['fa_rate'] = round( | |||||
| neg_result_json['detected_count'] / rst_dict['wav_count'], | |||||
| 6) | |||||
| if neg_result_json.__contains__('wav_time'): | |||||
| rst_dict['fa_per_hour'] = round( | |||||
| neg_result_json['detected_count'] | |||||
| / float(neg_result_json['wav_time'] / 3600), 6) | |||||
| if neg_result_json.__contains__('rejected_count'): | |||||
| rst_dict['rejected_count'] = neg_result_json['rejected_count'] | |||||
| if neg_result_json.__contains__('detected'): | |||||
| rst_dict['detected'] = neg_result_json['detected'] | |||||
| # parsing the result of roc | |||||
| elif inputs['kws_set'] == 'roc': | |||||
| threshold_start = 0.000 | |||||
| threshold_step = 0.001 | |||||
| threshold_end = 1.000 | |||||
| pos_keywords_list = [] | |||||
| neg_keywords_list = [] | |||||
| if pos_result_json.__contains__('keywords'): | |||||
| pos_keywords_list = pos_result_json['keywords'] | |||||
| if neg_result_json.__contains__('keywords'): | |||||
| neg_keywords_list = neg_result_json['keywords'] | |||||
| keywords_list = list(set(pos_keywords_list + neg_keywords_list)) | |||||
| pos_result_json['wav_count'] = inputs['pos_wav_count'] | |||||
| neg_result_json['wav_count'] = inputs['neg_wav_count'] | |||||
| if len(keywords_list) > 0: | |||||
| rst_dict['keywords'] = keywords_list | |||||
| for index in range(len(rst_dict['keywords'])): | |||||
| cur_keyword = rst_dict['keywords'][index] | |||||
| output_list = self._generate_roc_list( | |||||
| start=threshold_start, | |||||
| step=threshold_step, | |||||
| end=threshold_end, | |||||
| keyword=cur_keyword, | |||||
| pos_inputs=pos_result_json, | |||||
| neg_inputs=neg_result_json) | |||||
| rst_dict[cur_keyword] = output_list | |||||
| return rst_dict | |||||
| def _run_with_kwsbp(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||||
| if inputs['kws_set'] == 'roc': | |||||
| inputs['keyword_grammar_path'] = os.path.join( | |||||
| inputs['model_workspace'], 'keywords_roc.json') | |||||
| if inputs['kws_set'] == 'wav': | |||||
| dump_log_path: str = os.path.join(inputs['pos_dump_path'], | |||||
| 'dump.log') | |||||
| kws_cmd: str = inputs['kws_tool_path'] + \ | |||||
| ' --sys-dir=' + inputs['model_workspace'] + \ | |||||
| ' --cfg-file=' + inputs['cfg_file_path'] + \ | |||||
| ' --sample-rate=' + inputs['sample_rate'] + \ | |||||
| ' --keyword-grammar=' + inputs['keyword_grammar_path'] + \ | |||||
| ' --wave-scp=' + os.path.join(inputs['pos_data_path'], 'wave.list') + \ | |||||
| ' --num-thread=1 > ' + dump_log_path + ' 2>&1' | |||||
| os.system(kws_cmd) | |||||
| if inputs['kws_set'] in ['pos_testsets', 'roc']: | |||||
| data_dir: str = os.listdir(inputs['pos_data_path']) | |||||
| wav_list = [] | |||||
| for i in data_dir: | |||||
| suffix = os.path.splitext(os.path.basename(i))[1] | |||||
| if suffix == '.list': | |||||
| wav_list.append(os.path.join(inputs['pos_data_path'], i)) | |||||
| j: int = 0 | |||||
| process = [] | |||||
| while j < inputs['pos_num_thread']: | |||||
| wav_list_path: str = inputs['pos_data_path'] + '/wave.' + str( | |||||
| j) + '.list' | |||||
| dump_log_path: str = inputs['pos_dump_path'] + '/dump.' + str( | |||||
| j) + '.log' | |||||
| kws_cmd: str = inputs['kws_tool_path'] + \ | |||||
| ' --sys-dir=' + inputs['model_workspace'] + \ | |||||
| ' --cfg-file=' + inputs['cfg_file_path'] + \ | |||||
| ' --sample-rate=' + inputs['sample_rate'] + \ | |||||
| ' --keyword-grammar=' + inputs['keyword_grammar_path'] + \ | |||||
| ' --wave-scp=' + wav_list_path + \ | |||||
| ' --num-thread=1 > ' + dump_log_path + ' 2>&1' | |||||
| p = subprocess.Popen(kws_cmd, shell=True) | |||||
| process.append(p) | |||||
| j += 1 | |||||
| k: int = 0 | |||||
| while k < len(process): | |||||
| process[k].wait() | |||||
| k += 1 | |||||
| if inputs['kws_set'] in ['neg_testsets', 'roc']: | |||||
| data_dir: str = os.listdir(inputs['neg_data_path']) | |||||
| wav_list = [] | |||||
| for i in data_dir: | |||||
| suffix = os.path.splitext(os.path.basename(i))[1] | |||||
| if suffix == '.list': | |||||
| wav_list.append(os.path.join(inputs['neg_data_path'], i)) | |||||
| j: int = 0 | |||||
| process = [] | |||||
| while j < inputs['neg_num_thread']: | |||||
| wav_list_path: str = inputs['neg_data_path'] + '/wave.' + str( | |||||
| j) + '.list' | |||||
| dump_log_path: str = inputs['neg_dump_path'] + '/dump.' + str( | |||||
| j) + '.log' | |||||
| kws_cmd: str = inputs['kws_tool_path'] + \ | |||||
| ' --sys-dir=' + inputs['model_workspace'] + \ | |||||
| ' --cfg-file=' + inputs['cfg_file_path'] + \ | |||||
| ' --sample-rate=' + inputs['sample_rate'] + \ | |||||
| ' --keyword-grammar=' + inputs['keyword_grammar_path'] + \ | |||||
| ' --wave-scp=' + wav_list_path + \ | |||||
| ' --num-thread=1 > ' + dump_log_path + ' 2>&1' | |||||
| p = subprocess.Popen(kws_cmd, shell=True) | |||||
| process.append(p) | |||||
| j += 1 | |||||
| k: int = 0 | |||||
| while k < len(process): | |||||
| process[k].wait() | |||||
| k += 1 | |||||
| return inputs | |||||
| def _parse_dump_log(self, result_json: Dict[str, Any], | |||||
| dump_path: str) -> Dict[str, Any]: | |||||
| dump_dir = os.listdir(dump_path) | |||||
| for i in dump_dir: | |||||
| basename = os.path.splitext(os.path.basename(i))[0] | |||||
| # find dump.JOB.log | |||||
| if 'dump' in basename: | |||||
| with open( | |||||
| os.path.join(dump_path, i), mode='r', | |||||
| encoding='utf-8') as file: | |||||
| while 1: | |||||
| line = file.readline() | |||||
| if not line: | |||||
| break | |||||
| else: | |||||
| result_json = self._parse_result_log( | |||||
| line, result_json) | |||||
| def _parse_result_log(self, line: str, | |||||
| result_json: Dict[str, Any]) -> Dict[str, Any]: | |||||
| # valid info | |||||
| if '[rejected]' in line or '[detected]' in line: | |||||
| detected_count = 0 | |||||
| rejected_count = 0 | |||||
| if result_json.__contains__('detected_count'): | |||||
| detected_count = result_json['detected_count'] | |||||
| if result_json.__contains__('rejected_count'): | |||||
| rejected_count = result_json['rejected_count'] | |||||
| if '[detected]' in line: | |||||
| # [detected], fname:/xxx/.tmp_pos_testsets/pos_testsets/33.wav, | |||||
| # kw:小云小云, confidence:0.965155, time:[4.62-5.10], threshold:0.00, | |||||
| detected_count += 1 | |||||
| content_list = line.split(', ') | |||||
| file_name = os.path.basename(content_list[1].split(':')[1]) | |||||
| keyword = content_list[2].split(':')[1] | |||||
| confidence = content_list[3].split(':')[1] | |||||
| keywords_list = [] | |||||
| if result_json.__contains__('keywords'): | |||||
| keywords_list = result_json['keywords'] | |||||
| if keyword not in keywords_list: | |||||
| keywords_list.append(keyword) | |||||
| result_json['keywords'] = keywords_list | |||||
| keyword_item = {} | |||||
| keyword_item['confidence'] = confidence | |||||
| keyword_item['keyword'] = keyword | |||||
| item = {} | |||||
| item[file_name] = keyword_item | |||||
| detected_list = [] | |||||
| if result_json.__contains__('detected'): | |||||
| detected_list = result_json['detected'] | |||||
| detected_list.append(item) | |||||
| result_json['detected'] = detected_list | |||||
| elif '[rejected]' in line: | |||||
| # [rejected], fname:/xxx/.tmp_pos_testsets/pos_testsets/28.wav | |||||
| rejected_count += 1 | |||||
| content_list = line.split(', ') | |||||
| file_name = os.path.basename(content_list[1].split(':')[1]) | |||||
| file_name = file_name.strip().replace('\n', | |||||
| '').replace('\r', '') | |||||
| rejected_list = [] | |||||
| if result_json.__contains__('rejected'): | |||||
| rejected_list = result_json['rejected'] | |||||
| rejected_list.append(file_name) | |||||
| result_json['rejected'] = rejected_list | |||||
| result_json['detected_count'] = detected_count | |||||
| result_json['rejected_count'] = rejected_count | |||||
| elif 'total_proc_time=' in line and 'wav_time=' in line: | |||||
| # eg: total_proc_time=0.289000(s), wav_time=20.944125(s), kwsbp_rtf=0.013799 | |||||
| wav_total_time = 0 | |||||
| content_list = line.split('), ') | |||||
| if result_json.__contains__('wav_time'): | |||||
| wav_total_time = result_json['wav_time'] | |||||
| wav_time_str = content_list[1].split('=')[1] | |||||
| wav_time_str = wav_time_str.split('(')[0] | |||||
| wav_time = float(wav_time_str) | |||||
| wav_time = round(wav_time, 6) | |||||
| if isinstance(wav_time, float): | |||||
| wav_total_time += wav_time | |||||
| result_json['wav_time'] = wav_total_time | |||||
| return result_json | |||||
| def _generate_roc_list(self, start: float, step: float, end: float, | |||||
| keyword: str, pos_inputs: Dict[str, Any], | |||||
| neg_inputs: Dict[str, Any]) -> Dict[str, Any]: | |||||
| pos_wav_count = pos_inputs['wav_count'] | |||||
| neg_wav_time = neg_inputs['wav_time'] | |||||
| det_lists = pos_inputs['detected'] | |||||
| fa_lists = neg_inputs['detected'] | |||||
| threshold_cur = start | |||||
| """ | |||||
| input det_lists dict | |||||
| [ | |||||
| { | |||||
| "xxx.wav": { | |||||
| "confidence": "0.990368", | |||||
| "keyword": "小云小云" | |||||
| } | |||||
| }, | |||||
| { | |||||
| "yyy.wav": { | |||||
| "confidence": "0.990368", | |||||
| "keyword": "小云小云" | |||||
| } | |||||
| }, | |||||
| ] | |||||
| output dict | |||||
| [ | |||||
| { | |||||
| "threshold": 0.000, | |||||
| "recall": 0.999888, | |||||
| "fa_per_hour": 1.999999 | |||||
| }, | |||||
| { | |||||
| "threshold": 0.001, | |||||
| "recall": 0.999888, | |||||
| "fa_per_hour": 1.999999 | |||||
| }, | |||||
| ] | |||||
| """ | |||||
| output = [] | |||||
| while threshold_cur <= end: | |||||
| det_count = 0 | |||||
| fa_count = 0 | |||||
| for index in range(len(det_lists)): | |||||
| det_item = det_lists[index] | |||||
| det_wav_item = det_item.get(next(iter(det_item))) | |||||
| if det_wav_item['keyword'] == keyword: | |||||
| confidence = float(det_wav_item['confidence']) | |||||
| if confidence >= threshold_cur: | |||||
| det_count += 1 | |||||
| for index in range(len(fa_lists)): | |||||
| fa_item = fa_lists[index] | |||||
| fa_wav_item = fa_item.get(next(iter(fa_item))) | |||||
| if fa_wav_item['keyword'] == keyword: | |||||
| confidence = float(fa_wav_item['confidence']) | |||||
| if confidence >= threshold_cur: | |||||
| fa_count += 1 | |||||
| output_item = { | |||||
| 'threshold': round(threshold_cur, 3), | |||||
| 'recall': round(float(det_count / pos_wav_count), 6), | |||||
| 'fa_per_hour': round(fa_count / float(neg_wav_time / 3600), 6) | |||||
| } | |||||
| output.append(output_item) | |||||
| threshold_cur += step | |||||
| return output | |||||
| @@ -6,15 +6,15 @@ from typing import Any, Dict, Generator, List, Union | |||||
| from modelscope.hub.snapshot_download import snapshot_download | from modelscope.hub.snapshot_download import snapshot_download | ||||
| from modelscope.models.base import Model | from modelscope.models.base import Model | ||||
| from modelscope.msdatasets import MsDataset | |||||
| from modelscope.preprocessors import Preprocessor | from modelscope.preprocessors import Preprocessor | ||||
| from modelscope.pydatasets import PyDataset | |||||
| from modelscope.utils.config import Config | from modelscope.utils.config import Config | ||||
| from modelscope.utils.logger import get_logger | from modelscope.utils.logger import get_logger | ||||
| from .outputs import TASK_OUTPUTS | from .outputs import TASK_OUTPUTS | ||||
| from .util import is_model, is_official_hub_path | from .util import is_model, is_official_hub_path | ||||
| Tensor = Union['torch.Tensor', 'tf.Tensor'] | Tensor = Union['torch.Tensor', 'tf.Tensor'] | ||||
| Input = Union[str, tuple, PyDataset, 'PIL.Image.Image', 'numpy.ndarray'] | |||||
| Input = Union[str, tuple, MsDataset, 'PIL.Image.Image', 'numpy.ndarray'] | |||||
| InputModel = Union[str, Model] | InputModel = Union[str, Model] | ||||
| output_keys = [ | output_keys = [ | ||||
| @@ -85,7 +85,7 @@ class Pipeline(ABC): | |||||
| for ele in input: | for ele in input: | ||||
| output.append(self._process_single(ele, *args, **post_kwargs)) | output.append(self._process_single(ele, *args, **post_kwargs)) | ||||
| elif isinstance(input, PyDataset): | |||||
| elif isinstance(input, MsDataset): | |||||
| return self._process_iterator(input, *args, **post_kwargs) | return self._process_iterator(input, *args, **post_kwargs) | ||||
| else: | else: | ||||
| @@ -21,7 +21,6 @@ DEFAULT_MODEL_FOR_PIPELINE = { | |||||
| Tasks.sentence_similarity: | Tasks.sentence_similarity: | ||||
| (Pipelines.sentence_similarity, | (Pipelines.sentence_similarity, | ||||
| 'damo/nlp_structbert_sentence-similarity_chinese-base'), | 'damo/nlp_structbert_sentence-similarity_chinese-base'), | ||||
| Tasks.image_matting: ('image-matting', 'damo/cv_unet_image-matting'), | |||||
| Tasks.nli: (Pipelines.nli, 'damo/nlp_structbert_nli_chinese-base'), | Tasks.nli: (Pipelines.nli, 'damo/nlp_structbert_nli_chinese-base'), | ||||
| Tasks.sentiment_classification: | Tasks.sentiment_classification: | ||||
| (Pipelines.sentiment_classification, | (Pipelines.sentiment_classification, | ||||
| @@ -44,6 +43,9 @@ DEFAULT_MODEL_FOR_PIPELINE = { | |||||
| Tasks.fill_mask: (Pipelines.fill_mask, 'damo/nlp_veco_fill-mask-large'), | Tasks.fill_mask: (Pipelines.fill_mask, 'damo/nlp_veco_fill-mask-large'), | ||||
| Tasks.action_recognition: (Pipelines.action_recognition, | Tasks.action_recognition: (Pipelines.action_recognition, | ||||
| 'damo/cv_TAdaConv_action-recognition'), | 'damo/cv_TAdaConv_action-recognition'), | ||||
| Tasks.multi_modal_embedding: | |||||
| (Pipelines.multi_modal_embedding, | |||||
| 'damo/multi-modal_clip-vit-large-patch14-chinese_multi-modal-embedding') | |||||
| } | } | ||||
| @@ -1 +1,2 @@ | |||||
| from .image_captioning_pipeline import ImageCaptionPipeline | from .image_captioning_pipeline import ImageCaptionPipeline | ||||
| from .multi_modal_embedding_pipeline import MultiModalEmbeddingPipeline | |||||
| @@ -0,0 +1,34 @@ | |||||
| from typing import Any, Dict, Union | |||||
| from modelscope.metainfo import Pipelines | |||||
| from modelscope.pipelines.base import Input | |||||
| from modelscope.utils.constant import Tasks | |||||
| from modelscope.utils.logger import get_logger | |||||
| from ..base import Model, Pipeline | |||||
| from ..builder import PIPELINES | |||||
| logger = get_logger() | |||||
| @PIPELINES.register_module( | |||||
| Tasks.multi_modal_embedding, module_name=Pipelines.multi_modal_embedding) | |||||
| class MultiModalEmbeddingPipeline(Pipeline): | |||||
| def __init__(self, model: str, device_id: int = -1): | |||||
| if isinstance(model, str): | |||||
| pipe_model = Model.from_pretrained(model) | |||||
| elif isinstance(model, Model): | |||||
| pipe_model = model | |||||
| else: | |||||
| raise NotImplementedError('model must be a single str') | |||||
| super().__init__(model=pipe_model) | |||||
| def preprocess(self, input: Input) -> Dict[str, Any]: | |||||
| return input | |||||
| def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: | |||||
| return self.model(input) | |||||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||||
| return inputs | |||||
| @@ -131,6 +131,13 @@ TASK_OUTPUTS = { | |||||
| # } | # } | ||||
| Tasks.image_captioning: ['caption'], | Tasks.image_captioning: ['caption'], | ||||
| # multi-modal embedding result for single sample | |||||
| # { | |||||
| # "img_embedding": np.array with shape [1, D], | |||||
| # "text_embedding": np.array with shape [1, D] | |||||
| # } | |||||
| Tasks.multi_modal_embedding: ['img_embedding', 'text_embedding'], | |||||
| # visual grounding result for single sample | # visual grounding result for single sample | ||||
| # { | # { | ||||
| # "boxes": [ | # "boxes": [ | ||||
| @@ -5,6 +5,7 @@ from .base import Preprocessor | |||||
| from .builder import PREPROCESSORS, build_preprocessor | from .builder import PREPROCESSORS, build_preprocessor | ||||
| from .common import Compose | from .common import Compose | ||||
| from .image import LoadImage, load_image | from .image import LoadImage, load_image | ||||
| from .kws import WavToLists | |||||
| from .multi_modal import OfaImageCaptionPreprocessor | from .multi_modal import OfaImageCaptionPreprocessor | ||||
| from .nlp import * # noqa F403 | from .nlp import * # noqa F403 | ||||
| from .space.dialog_intent_prediction_preprocessor import * # noqa F403 | from .space.dialog_intent_prediction_preprocessor import * # noqa F403 | ||||
| @@ -0,0 +1,253 @@ | |||||
| import os | |||||
| import shutil | |||||
| import stat | |||||
| from pathlib import Path | |||||
| from typing import Any, Dict, List | |||||
| import yaml | |||||
| from modelscope.metainfo import Preprocessors | |||||
| from modelscope.models.base import Model | |||||
| from modelscope.utils.constant import Fields | |||||
| from .base import Preprocessor | |||||
| from .builder import PREPROCESSORS | |||||
| __all__ = ['WavToLists'] | |||||
| @PREPROCESSORS.register_module( | |||||
| Fields.audio, module_name=Preprocessors.wav_to_lists) | |||||
| class WavToLists(Preprocessor): | |||||
| """generate audio lists file from wav | |||||
| Args: | |||||
| workspace (str): store temporarily kws intermedium and result | |||||
| """ | |||||
| def __init__(self, workspace: str = None): | |||||
| # the workspace path | |||||
| if len(workspace) == 0: | |||||
| self._workspace = os.path.join(os.getcwd(), '.tmp') | |||||
| else: | |||||
| self._workspace = workspace | |||||
| if not os.path.exists(self._workspace): | |||||
| os.mkdir(self._workspace) | |||||
| def __call__(self, | |||||
| model: Model = None, | |||||
| kws_type: str = None, | |||||
| wav_path: List[str] = None) -> Dict[str, Any]: | |||||
| """Call functions to load model and wav. | |||||
| Args: | |||||
| model (Model): model should be provided | |||||
| kws_type (str): kws work type: wav, neg_testsets, pos_testsets, roc | |||||
| wav_path (List[str]): wav_path[0] is positive wav path, wav_path[1] is negative wav path | |||||
| Returns: | |||||
| Dict[str, Any]: the kws result | |||||
| """ | |||||
| assert model is not None, 'preprocess kws model should be provided' | |||||
| assert kws_type in ['wav', 'pos_testsets', 'neg_testsets', 'roc' | |||||
| ], f'preprocess kws_type {kws_type} is invalid' | |||||
| assert wav_path[0] is not None or wav_path[ | |||||
| 1] is not None, 'preprocess wav_path is invalid' | |||||
| self._model = model | |||||
| out = self.forward(self._model.forward(), kws_type, wav_path) | |||||
| return out | |||||
| def forward(self, model: Dict[str, Any], kws_type: str, | |||||
| wav_path: List[str]) -> Dict[str, Any]: | |||||
| assert len(kws_type) > 0, 'preprocess kws_type is empty' | |||||
| assert len( | |||||
| model['config_path']) > 0, 'preprocess model[config_path] is empty' | |||||
| assert os.path.exists( | |||||
| model['config_path']), 'model config.yaml is absent' | |||||
| inputs = model.copy() | |||||
| inputs['kws_set'] = kws_type | |||||
| inputs['workspace'] = self._workspace | |||||
| if wav_path[0] is not None: | |||||
| inputs['pos_wav_path'] = wav_path[0] | |||||
| if wav_path[1] is not None: | |||||
| inputs['neg_wav_path'] = wav_path[1] | |||||
| out = self._read_config(inputs) | |||||
| out = self._generate_wav_lists(out) | |||||
| return out | |||||
| def _read_config(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||||
| """read and parse config.yaml to get all model files | |||||
| """ | |||||
| assert os.path.exists( | |||||
| inputs['config_path']), 'model config yaml file does not exist' | |||||
| config_file = open(inputs['config_path']) | |||||
| root = yaml.full_load(config_file) | |||||
| config_file.close() | |||||
| inputs['cfg_file'] = root['cfg_file'] | |||||
| inputs['cfg_file_path'] = os.path.join(inputs['model_workspace'], | |||||
| root['cfg_file']) | |||||
| inputs['keyword_grammar'] = root['keyword_grammar'] | |||||
| inputs['keyword_grammar_path'] = os.path.join( | |||||
| inputs['model_workspace'], root['keyword_grammar']) | |||||
| inputs['sample_rate'] = str(root['sample_rate']) | |||||
| inputs['kws_tool'] = root['kws_tool'] | |||||
| if os.path.exists( | |||||
| os.path.join(inputs['workspace'], inputs['kws_tool'])): | |||||
| inputs['kws_tool_path'] = os.path.join(inputs['workspace'], | |||||
| inputs['kws_tool']) | |||||
| elif os.path.exists(os.path.join('/usr/bin', inputs['kws_tool'])): | |||||
| inputs['kws_tool_path'] = os.path.join('/usr/bin', | |||||
| inputs['kws_tool']) | |||||
| elif os.path.exists(os.path.join('/bin', inputs['kws_tool'])): | |||||
| inputs['kws_tool_path'] = os.path.join('/bin', inputs['kws_tool']) | |||||
| assert os.path.exists(inputs['kws_tool_path']), 'cannot find kwsbp' | |||||
| os.chmod(inputs['kws_tool_path'], | |||||
| stat.S_IXUSR + stat.S_IXGRP + stat.S_IXOTH) | |||||
| self._config_checking(inputs) | |||||
| return inputs | |||||
| def _generate_wav_lists(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||||
| """assemble wav lists | |||||
| """ | |||||
| if inputs['kws_set'] == 'wav': | |||||
| inputs['pos_num_thread'] = 1 | |||||
| wave_scp_content: str = inputs['pos_wav_path'] + '\n' | |||||
| with open(os.path.join(inputs['pos_data_path'], 'wave.list'), | |||||
| 'a') as f: | |||||
| f.write(wave_scp_content) | |||||
| inputs['pos_wav_count'] = 1 | |||||
| if inputs['kws_set'] in ['pos_testsets', 'roc']: | |||||
| # find all positive wave | |||||
| wav_list = [] | |||||
| wav_dir = inputs['pos_wav_path'] | |||||
| wav_list = self._recursion_dir_all_wave(wav_list, wav_dir) | |||||
| list_count: int = len(wav_list) | |||||
| inputs['pos_wav_count'] = list_count | |||||
| if list_count <= 128: | |||||
| inputs['pos_num_thread'] = list_count | |||||
| j: int = 0 | |||||
| while j < list_count: | |||||
| wave_scp_content: str = wav_list[j] + '\n' | |||||
| wav_list_path = inputs['pos_data_path'] + '/wave.' + str( | |||||
| j) + '.list' | |||||
| with open(wav_list_path, 'a') as f: | |||||
| f.write(wave_scp_content) | |||||
| j += 1 | |||||
| else: | |||||
| inputs['pos_num_thread'] = 128 | |||||
| j: int = 0 | |||||
| k: int = 0 | |||||
| while j < list_count: | |||||
| wave_scp_content: str = wav_list[j] + '\n' | |||||
| wav_list_path = inputs['pos_data_path'] + '/wave.' + str( | |||||
| k) + '.list' | |||||
| with open(wav_list_path, 'a') as f: | |||||
| f.write(wave_scp_content) | |||||
| j += 1 | |||||
| k += 1 | |||||
| if k >= 128: | |||||
| k = 0 | |||||
| if inputs['kws_set'] in ['neg_testsets', 'roc']: | |||||
| # find all negative wave | |||||
| wav_list = [] | |||||
| wav_dir = inputs['neg_wav_path'] | |||||
| wav_list = self._recursion_dir_all_wave(wav_list, wav_dir) | |||||
| list_count: int = len(wav_list) | |||||
| inputs['neg_wav_count'] = list_count | |||||
| if list_count <= 128: | |||||
| inputs['neg_num_thread'] = list_count | |||||
| j: int = 0 | |||||
| while j < list_count: | |||||
| wave_scp_content: str = wav_list[j] + '\n' | |||||
| wav_list_path = inputs['neg_data_path'] + '/wave.' + str( | |||||
| j) + '.list' | |||||
| with open(wav_list_path, 'a') as f: | |||||
| f.write(wave_scp_content) | |||||
| j += 1 | |||||
| else: | |||||
| inputs['neg_num_thread'] = 128 | |||||
| j: int = 0 | |||||
| k: int = 0 | |||||
| while j < list_count: | |||||
| wave_scp_content: str = wav_list[j] + '\n' | |||||
| wav_list_path = inputs['neg_data_path'] + '/wave.' + str( | |||||
| k) + '.list' | |||||
| with open(wav_list_path, 'a') as f: | |||||
| f.write(wave_scp_content) | |||||
| j += 1 | |||||
| k += 1 | |||||
| if k >= 128: | |||||
| k = 0 | |||||
| return inputs | |||||
| def _recursion_dir_all_wave(self, wav_list, | |||||
| dir_path: str) -> Dict[str, Any]: | |||||
| dir_files = os.listdir(dir_path) | |||||
| for file in dir_files: | |||||
| file_path = os.path.join(dir_path, file) | |||||
| if os.path.isfile(file_path): | |||||
| if file_path.endswith('.wav') or file_path.endswith('.WAV'): | |||||
| wav_list.append(file_path) | |||||
| elif os.path.isdir(file_path): | |||||
| self._recursion_dir_all_wave(wav_list, file_path) | |||||
| return wav_list | |||||
| def _config_checking(self, inputs: Dict[str, Any]): | |||||
| if inputs['kws_set'] in ['wav', 'pos_testsets', 'roc']: | |||||
| inputs['pos_data_path'] = os.path.join(inputs['workspace'], | |||||
| 'pos_data') | |||||
| if not os.path.exists(inputs['pos_data_path']): | |||||
| os.mkdir(inputs['pos_data_path']) | |||||
| else: | |||||
| shutil.rmtree(inputs['pos_data_path']) | |||||
| os.mkdir(inputs['pos_data_path']) | |||||
| inputs['pos_dump_path'] = os.path.join(inputs['workspace'], | |||||
| 'pos_dump') | |||||
| if not os.path.exists(inputs['pos_dump_path']): | |||||
| os.mkdir(inputs['pos_dump_path']) | |||||
| else: | |||||
| shutil.rmtree(inputs['pos_dump_path']) | |||||
| os.mkdir(inputs['pos_dump_path']) | |||||
| if inputs['kws_set'] in ['neg_testsets', 'roc']: | |||||
| inputs['neg_data_path'] = os.path.join(inputs['workspace'], | |||||
| 'neg_data') | |||||
| if not os.path.exists(inputs['neg_data_path']): | |||||
| os.mkdir(inputs['neg_data_path']) | |||||
| else: | |||||
| shutil.rmtree(inputs['neg_data_path']) | |||||
| os.mkdir(inputs['neg_data_path']) | |||||
| inputs['neg_dump_path'] = os.path.join(inputs['workspace'], | |||||
| 'neg_dump') | |||||
| if not os.path.exists(inputs['neg_dump_path']): | |||||
| os.mkdir(inputs['neg_dump_path']) | |||||
| else: | |||||
| shutil.rmtree(inputs['neg_dump_path']) | |||||
| os.mkdir(inputs['neg_dump_path']) | |||||
| @@ -1 +0,0 @@ | |||||
| from .py_dataset import PyDataset | |||||
| @@ -56,11 +56,13 @@ class Tasks(object): | |||||
| auto_speech_recognition = 'auto-speech-recognition' | auto_speech_recognition = 'auto-speech-recognition' | ||||
| text_to_speech = 'text-to-speech' | text_to_speech = 'text-to-speech' | ||||
| speech_signal_process = 'speech-signal-process' | speech_signal_process = 'speech-signal-process' | ||||
| key_word_spotting = 'key-word-spotting' | |||||
| # multi-modal tasks | # multi-modal tasks | ||||
| image_captioning = 'image-captioning' | image_captioning = 'image-captioning' | ||||
| visual_grounding = 'visual-grounding' | visual_grounding = 'visual-grounding' | ||||
| text_to_image_synthesis = 'text-to-image-synthesis' | text_to_image_synthesis = 'text-to-image-synthesis' | ||||
| multi_modal_embedding = 'multi-modal-embedding' | |||||
| class InputFields(object): | class InputFields(object): | ||||
| @@ -3,10 +3,9 @@ import unittest | |||||
| import datasets as hfdata | import datasets as hfdata | ||||
| from modelscope.models import Model | from modelscope.models import Model | ||||
| from modelscope.msdatasets import MsDataset | |||||
| from modelscope.preprocessors import SequenceClassificationPreprocessor | from modelscope.preprocessors import SequenceClassificationPreprocessor | ||||
| from modelscope.preprocessors.base import Preprocessor | from modelscope.preprocessors.base import Preprocessor | ||||
| from modelscope.pydatasets import PyDataset | |||||
| from modelscope.utils.constant import Hubs | |||||
| from modelscope.utils.test_utils import require_tf, require_torch, test_level | from modelscope.utils.test_utils import require_tf, require_torch, test_level | ||||
| @@ -31,15 +30,15 @@ class ImgPreprocessor(Preprocessor): | |||||
| } | } | ||||
| class PyDatasetTest(unittest.TestCase): | |||||
| class MsDatasetTest(unittest.TestCase): | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | ||||
| def test_ds_basic(self): | def test_ds_basic(self): | ||||
| ms_ds_full = PyDataset.load('squad') | |||||
| ms_ds_full = MsDataset.load('squad') | |||||
| ms_ds_full_hf = hfdata.load_dataset('squad') | ms_ds_full_hf = hfdata.load_dataset('squad') | ||||
| ms_ds_train = PyDataset.load('squad', split='train') | |||||
| ms_ds_train = MsDataset.load('squad', split='train') | |||||
| ms_ds_train_hf = hfdata.load_dataset('squad', split='train') | ms_ds_train_hf = hfdata.load_dataset('squad', split='train') | ||||
| ms_image_train = PyDataset.from_hf_dataset( | |||||
| ms_image_train = MsDataset.from_hf_dataset( | |||||
| hfdata.load_dataset('beans', split='train')) | hfdata.load_dataset('beans', split='train')) | ||||
| self.assertEqual(ms_ds_full['train'][0], ms_ds_full_hf['train'][0]) | self.assertEqual(ms_ds_full['train'][0], ms_ds_full_hf['train'][0]) | ||||
| self.assertEqual(ms_ds_full['validation'][0], | self.assertEqual(ms_ds_full['validation'][0], | ||||
| @@ -58,7 +57,7 @@ class PyDatasetTest(unittest.TestCase): | |||||
| nlp_model.model_dir, | nlp_model.model_dir, | ||||
| first_sequence='context', | first_sequence='context', | ||||
| second_sequence=None) | second_sequence=None) | ||||
| ms_ds_train = PyDataset.load('squad', split='train') | |||||
| ms_ds_train = MsDataset.load('squad', split='train') | |||||
| pt_dataset = ms_ds_train.to_torch_dataset(preprocessors=preprocessor) | pt_dataset = ms_ds_train.to_torch_dataset(preprocessors=preprocessor) | ||||
| import torch | import torch | ||||
| dataloader = torch.utils.data.DataLoader(pt_dataset, batch_size=5) | dataloader = torch.utils.data.DataLoader(pt_dataset, batch_size=5) | ||||
| @@ -75,7 +74,7 @@ class PyDatasetTest(unittest.TestCase): | |||||
| nlp_model.model_dir, | nlp_model.model_dir, | ||||
| first_sequence='context', | first_sequence='context', | ||||
| second_sequence=None) | second_sequence=None) | ||||
| ms_ds_train = PyDataset.load('squad', split='train') | |||||
| ms_ds_train = MsDataset.load('squad', split='train') | |||||
| tf_dataset = ms_ds_train.to_tf_dataset( | tf_dataset = ms_ds_train.to_tf_dataset( | ||||
| batch_size=5, | batch_size=5, | ||||
| shuffle=True, | shuffle=True, | ||||
| @@ -86,7 +85,7 @@ class PyDatasetTest(unittest.TestCase): | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | ||||
| @require_torch | @require_torch | ||||
| def test_to_torch_dataset_img(self): | def test_to_torch_dataset_img(self): | ||||
| ms_image_train = PyDataset.from_hf_dataset( | |||||
| ms_image_train = MsDataset.from_hf_dataset( | |||||
| hfdata.load_dataset('beans', split='train')) | hfdata.load_dataset('beans', split='train')) | ||||
| pt_dataset = ms_image_train.to_torch_dataset( | pt_dataset = ms_image_train.to_torch_dataset( | ||||
| preprocessors=ImgPreprocessor( | preprocessors=ImgPreprocessor( | ||||
| @@ -100,7 +99,7 @@ class PyDatasetTest(unittest.TestCase): | |||||
| def test_to_tf_dataset_img(self): | def test_to_tf_dataset_img(self): | ||||
| import tensorflow as tf | import tensorflow as tf | ||||
| tf.compat.v1.enable_eager_execution() | tf.compat.v1.enable_eager_execution() | ||||
| ms_image_train = PyDataset.load('beans', split='train') | |||||
| ms_image_train = MsDataset.load('beans', split='train') | |||||
| tf_dataset = ms_image_train.to_tf_dataset( | tf_dataset = ms_image_train.to_tf_dataset( | ||||
| batch_size=5, | batch_size=5, | ||||
| shuffle=True, | shuffle=True, | ||||
| @@ -8,8 +8,8 @@ import unittest | |||||
| import cv2 | import cv2 | ||||
| from modelscope.fileio import File | from modelscope.fileio import File | ||||
| from modelscope.msdatasets import MsDataset | |||||
| from modelscope.pipelines import pipeline | from modelscope.pipelines import pipeline | ||||
| from modelscope.pydatasets import PyDataset | |||||
| from modelscope.utils.constant import ModelFile, Tasks | from modelscope.utils.constant import ModelFile, Tasks | ||||
| from modelscope.utils.test_utils import test_level | from modelscope.utils.test_utils import test_level | ||||
| @@ -7,8 +7,8 @@ import unittest | |||||
| import cv2 | import cv2 | ||||
| from modelscope.fileio import File | from modelscope.fileio import File | ||||
| from modelscope.msdatasets import MsDataset | |||||
| from modelscope.pipelines import pipeline | from modelscope.pipelines import pipeline | ||||
| from modelscope.pydatasets import PyDataset | |||||
| from modelscope.utils.constant import ModelFile, Tasks | from modelscope.utils.constant import ModelFile, Tasks | ||||
| from modelscope.utils.test_utils import test_level | from modelscope.utils.test_utils import test_level | ||||
| @@ -37,7 +37,7 @@ class ImageMattingTest(unittest.TestCase): | |||||
| # alternatively: | # alternatively: | ||||
| # input_location = '/dir/to/images' | # input_location = '/dir/to/images' | ||||
| dataset = PyDataset.load(input_location, target='image') | |||||
| dataset = MsDataset.load(input_location, target='image') | |||||
| img_matting = pipeline(Tasks.image_matting, model=self.model_id) | img_matting = pipeline(Tasks.image_matting, model=self.model_id) | ||||
| # note that for dataset output, the inference-output is a Generator that can be iterated. | # note that for dataset output, the inference-output is a Generator that can be iterated. | ||||
| result = img_matting(dataset) | result = img_matting(dataset) | ||||
| @@ -62,7 +62,7 @@ class ImageMattingTest(unittest.TestCase): | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | ||||
| def test_run_with_modelscope_dataset(self): | def test_run_with_modelscope_dataset(self): | ||||
| dataset = PyDataset.load('beans', split='train', target='image') | |||||
| dataset = MsDataset.load('beans', split='train', target='image') | |||||
| img_matting = pipeline(Tasks.image_matting, model=self.model_id) | img_matting = pipeline(Tasks.image_matting, model=self.model_id) | ||||
| result = img_matting(dataset) | result = img_matting(dataset) | ||||
| for i in range(10): | for i in range(10): | ||||
| @@ -0,0 +1,334 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||||
| import os | |||||
| import shutil | |||||
| import tarfile | |||||
| import unittest | |||||
| import requests | |||||
| from modelscope.metainfo import Pipelines, Preprocessors | |||||
| from modelscope.models import Model | |||||
| from modelscope.pipelines import pipeline | |||||
| from modelscope.preprocessors import build_preprocessor | |||||
| from modelscope.utils.constant import Fields, InputFields, Tasks | |||||
| from modelscope.utils.test_utils import test_level | |||||
| KWSBP_URL = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/KWS/tools/kwsbp' | |||||
| POS_WAV_FILE = '20200707_spk57db_storenoise52db_40cm_xiaoyun_sox_6.wav' | |||||
| POS_WAV_URL = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/KWS/pos_testset/' + POS_WAV_FILE | |||||
| POS_TESTSETS_FILE = 'pos_testsets.tar.gz' | |||||
| POS_TESTSETS_URL = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/KWS/pos_testsets.tar.gz' | |||||
| NEG_TESTSETS_FILE = 'neg_testsets.tar.gz' | |||||
| NEG_TESTSETS_URL = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/KWS/neg_testsets.tar.gz' | |||||
| def un_tar_gz(fname, dirs): | |||||
| t = tarfile.open(fname) | |||||
| t.extractall(path=dirs) | |||||
| class KeyWordSpottingTest(unittest.TestCase): | |||||
| def setUp(self) -> None: | |||||
| self.model_id = 'damo/speech_charctc_kws_phone-xiaoyunxiaoyun' | |||||
| self.workspace = os.path.join(os.getcwd(), '.tmp') | |||||
| if not os.path.exists(self.workspace): | |||||
| os.mkdir(self.workspace) | |||||
| def tearDown(self) -> None: | |||||
| if os.path.exists(self.workspace): | |||||
| shutil.rmtree(self.workspace) | |||||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||||
| def test_run_with_wav(self): | |||||
| # wav, neg_testsets, pos_testsets, roc | |||||
| kws_set = 'wav' | |||||
| # downloading wav file | |||||
| wav_file_path = os.path.join(self.workspace, POS_WAV_FILE) | |||||
| if not os.path.exists(wav_file_path): | |||||
| r = requests.get(POS_WAV_URL) | |||||
| with open(wav_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| # downloading kwsbp | |||||
| kwsbp_file_path = os.path.join(self.workspace, 'kwsbp') | |||||
| if not os.path.exists(kwsbp_file_path): | |||||
| r = requests.get(KWSBP_URL) | |||||
| with open(kwsbp_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| model = Model.from_pretrained(self.model_id) | |||||
| self.assertTrue(model is not None) | |||||
| cfg_preprocessor = dict( | |||||
| type=Preprocessors.wav_to_lists, workspace=self.workspace) | |||||
| preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio) | |||||
| self.assertTrue(preprocessor is not None) | |||||
| kwsbp_16k_pipline = pipeline( | |||||
| pipeline_name=Pipelines.kws_kwsbp, | |||||
| model=model, | |||||
| preprocessor=preprocessor) | |||||
| self.assertTrue(kwsbp_16k_pipline is not None) | |||||
| kws_result = kwsbp_16k_pipline( | |||||
| kws_type=kws_set, wav_path=[wav_file_path, None]) | |||||
| self.assertTrue(kws_result.__contains__('detected')) | |||||
| """ | |||||
| kws result json format example: | |||||
| { | |||||
| 'wav_count': 1, | |||||
| 'kws_set': 'wav', | |||||
| 'wav_time': 9.132938, | |||||
| 'keywords': ['小云小云'], | |||||
| 'detected': True, | |||||
| 'confidence': 0.990368 | |||||
| } | |||||
| """ | |||||
| if kws_result.__contains__('keywords'): | |||||
| print('test_run_with_wav keywords: ', kws_result['keywords']) | |||||
| print('test_run_with_wav detected result: ', kws_result['detected']) | |||||
| print('test_run_with_wav wave time(seconds): ', kws_result['wav_time']) | |||||
| @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||||
| def test_run_with_pos_testsets(self): | |||||
| # wav, neg_testsets, pos_testsets, roc | |||||
| kws_set = 'pos_testsets' | |||||
| # downloading pos_testsets file | |||||
| testsets_file_path = os.path.join(self.workspace, POS_TESTSETS_FILE) | |||||
| if not os.path.exists(testsets_file_path): | |||||
| r = requests.get(POS_TESTSETS_URL) | |||||
| with open(testsets_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| testsets_dir_name = os.path.splitext( | |||||
| os.path.basename(POS_TESTSETS_FILE))[0] | |||||
| testsets_dir_name = os.path.splitext( | |||||
| os.path.basename(testsets_dir_name))[0] | |||||
| # wav_file_path = <cwd>/.tmp_pos_testsets/pos_testsets/ | |||||
| wav_file_path = os.path.join(self.workspace, testsets_dir_name) | |||||
| # untar the pos_testsets file | |||||
| if not os.path.exists(wav_file_path): | |||||
| un_tar_gz(testsets_file_path, self.workspace) | |||||
| # downloading kwsbp -- a kws batch processing tool | |||||
| kwsbp_file_path = os.path.join(self.workspace, 'kwsbp') | |||||
| if not os.path.exists(kwsbp_file_path): | |||||
| r = requests.get(KWSBP_URL) | |||||
| with open(kwsbp_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| model = Model.from_pretrained(self.model_id) | |||||
| self.assertTrue(model is not None) | |||||
| cfg_preprocessor = dict( | |||||
| type=Preprocessors.wav_to_lists, workspace=self.workspace) | |||||
| preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio) | |||||
| self.assertTrue(preprocessor is not None) | |||||
| kwsbp_16k_pipline = pipeline( | |||||
| pipeline_name=Pipelines.kws_kwsbp, | |||||
| model=model, | |||||
| preprocessor=preprocessor) | |||||
| self.assertTrue(kwsbp_16k_pipline is not None) | |||||
| kws_result = kwsbp_16k_pipline( | |||||
| kws_type=kws_set, wav_path=[wav_file_path, None]) | |||||
| self.assertTrue(kws_result.__contains__('recall')) | |||||
| """ | |||||
| kws result json format example: | |||||
| { | |||||
| 'wav_count': 450, | |||||
| 'kws_set': 'pos_testsets', | |||||
| 'wav_time': 3013.759254, | |||||
| 'keywords': ["小云小云"], | |||||
| 'recall': 0.953333, | |||||
| 'detected_count': 429, | |||||
| 'rejected_count': 21, | |||||
| 'rejected': [ | |||||
| 'yyy.wav', | |||||
| 'zzz.wav', | |||||
| ...... | |||||
| ] | |||||
| } | |||||
| """ | |||||
| if kws_result.__contains__('keywords'): | |||||
| print('test_run_with_pos_testsets keywords: ', | |||||
| kws_result['keywords']) | |||||
| print('test_run_with_pos_testsets recall: ', kws_result['recall']) | |||||
| print('test_run_with_pos_testsets wave time(seconds): ', | |||||
| kws_result['wav_time']) | |||||
| @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||||
| def test_run_with_neg_testsets(self): | |||||
| # wav, neg_testsets, pos_testsets, roc | |||||
| kws_set = 'neg_testsets' | |||||
| # downloading neg_testsets file | |||||
| testsets_file_path = os.path.join(self.workspace, NEG_TESTSETS_FILE) | |||||
| if not os.path.exists(testsets_file_path): | |||||
| r = requests.get(NEG_TESTSETS_URL) | |||||
| with open(testsets_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| testsets_dir_name = os.path.splitext( | |||||
| os.path.basename(NEG_TESTSETS_FILE))[0] | |||||
| testsets_dir_name = os.path.splitext( | |||||
| os.path.basename(testsets_dir_name))[0] | |||||
| # wav_file_path = <cwd>/.tmp_neg_testsets/neg_testsets/ | |||||
| wav_file_path = os.path.join(self.workspace, testsets_dir_name) | |||||
| # untar the neg_testsets file | |||||
| if not os.path.exists(wav_file_path): | |||||
| un_tar_gz(testsets_file_path, self.workspace) | |||||
| # downloading kwsbp -- a kws batch processing tool | |||||
| kwsbp_file_path = os.path.join(self.workspace, 'kwsbp') | |||||
| if not os.path.exists(kwsbp_file_path): | |||||
| r = requests.get(KWSBP_URL) | |||||
| with open(kwsbp_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| model = Model.from_pretrained(self.model_id) | |||||
| self.assertTrue(model is not None) | |||||
| cfg_preprocessor = dict( | |||||
| type=Preprocessors.wav_to_lists, workspace=self.workspace) | |||||
| preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio) | |||||
| self.assertTrue(preprocessor is not None) | |||||
| kwsbp_16k_pipline = pipeline( | |||||
| pipeline_name=Pipelines.kws_kwsbp, | |||||
| model=model, | |||||
| preprocessor=preprocessor) | |||||
| self.assertTrue(kwsbp_16k_pipline is not None) | |||||
| kws_result = kwsbp_16k_pipline( | |||||
| kws_type=kws_set, wav_path=[None, wav_file_path]) | |||||
| self.assertTrue(kws_result.__contains__('fa_rate')) | |||||
| """ | |||||
| kws result json format example: | |||||
| { | |||||
| 'wav_count': 751, | |||||
| 'kws_set': 'neg_testsets', | |||||
| 'wav_time': 3572.180812, | |||||
| 'keywords': ['小云小云'], | |||||
| 'fa_rate': 0.001332, | |||||
| 'fa_per_hour': 1.007788, | |||||
| 'detected_count': 1, | |||||
| 'rejected_count': 750, | |||||
| 'detected': [ | |||||
| { | |||||
| '6.wav': { | |||||
| 'confidence': '0.321170' | |||||
| } | |||||
| } | |||||
| ] | |||||
| } | |||||
| """ | |||||
| if kws_result.__contains__('keywords'): | |||||
| print('test_run_with_neg_testsets keywords: ', | |||||
| kws_result['keywords']) | |||||
| print('test_run_with_neg_testsets fa rate: ', kws_result['fa_rate']) | |||||
| print('test_run_with_neg_testsets fa per hour: ', | |||||
| kws_result['fa_per_hour']) | |||||
| print('test_run_with_neg_testsets wave time(seconds): ', | |||||
| kws_result['wav_time']) | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||||
| def test_run_with_roc(self): | |||||
| # wav, neg_testsets, pos_testsets, roc | |||||
| kws_set = 'roc' | |||||
| # downloading neg_testsets file | |||||
| testsets_file_path = os.path.join(self.workspace, NEG_TESTSETS_FILE) | |||||
| if not os.path.exists(testsets_file_path): | |||||
| r = requests.get(NEG_TESTSETS_URL) | |||||
| with open(testsets_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| testsets_dir_name = os.path.splitext( | |||||
| os.path.basename(NEG_TESTSETS_FILE))[0] | |||||
| testsets_dir_name = os.path.splitext( | |||||
| os.path.basename(testsets_dir_name))[0] | |||||
| # neg_file_path = <workspace>/.tmp_roc/neg_testsets/ | |||||
| neg_file_path = os.path.join(self.workspace, testsets_dir_name) | |||||
| # untar the neg_testsets file | |||||
| if not os.path.exists(neg_file_path): | |||||
| un_tar_gz(testsets_file_path, self.workspace) | |||||
| # downloading pos_testsets file | |||||
| testsets_file_path = os.path.join(self.workspace, POS_TESTSETS_FILE) | |||||
| if not os.path.exists(testsets_file_path): | |||||
| r = requests.get(POS_TESTSETS_URL) | |||||
| with open(testsets_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| testsets_dir_name = os.path.splitext( | |||||
| os.path.basename(POS_TESTSETS_FILE))[0] | |||||
| testsets_dir_name = os.path.splitext( | |||||
| os.path.basename(testsets_dir_name))[0] | |||||
| # pos_file_path = <workspace>/.tmp_roc/pos_testsets/ | |||||
| pos_file_path = os.path.join(self.workspace, testsets_dir_name) | |||||
| # untar the pos_testsets file | |||||
| if not os.path.exists(pos_file_path): | |||||
| un_tar_gz(testsets_file_path, self.workspace) | |||||
| # downloading kwsbp -- a kws batch processing tool | |||||
| kwsbp_file_path = os.path.join(self.workspace, 'kwsbp') | |||||
| if not os.path.exists(kwsbp_file_path): | |||||
| r = requests.get(KWSBP_URL) | |||||
| with open(kwsbp_file_path, 'wb') as f: | |||||
| f.write(r.content) | |||||
| model = Model.from_pretrained(self.model_id) | |||||
| self.assertTrue(model is not None) | |||||
| cfg_preprocessor = dict( | |||||
| type=Preprocessors.wav_to_lists, workspace=self.workspace) | |||||
| preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio) | |||||
| self.assertTrue(preprocessor is not None) | |||||
| kwsbp_16k_pipline = pipeline( | |||||
| pipeline_name=Pipelines.kws_kwsbp, | |||||
| model=model, | |||||
| preprocessor=preprocessor) | |||||
| self.assertTrue(kwsbp_16k_pipline is not None) | |||||
| kws_result = kwsbp_16k_pipline( | |||||
| kws_type=kws_set, wav_path=[pos_file_path, neg_file_path]) | |||||
| """ | |||||
| kws result json format example: | |||||
| { | |||||
| 'kws_set': 'roc', | |||||
| 'keywords': ['小云小云'], | |||||
| '小云小云': [ | |||||
| {'threshold': 0.0, 'recall': 0.953333, 'fa_per_hour': 1.007788}, | |||||
| {'threshold': 0.001, 'recall': 0.953333, 'fa_per_hour': 1.007788}, | |||||
| ...... | |||||
| {'threshold': 0.999, 'recall': 0.004444, 'fa_per_hour': 0.0} | |||||
| ] | |||||
| } | |||||
| """ | |||||
| if kws_result.__contains__('keywords'): | |||||
| find_keyword = kws_result['keywords'][0] | |||||
| print('test_run_with_roc keywords: ', find_keyword) | |||||
| keyword_list = kws_result[find_keyword] | |||||
| for item in iter(keyword_list): | |||||
| threshold: float = item['threshold'] | |||||
| recall: float = item['recall'] | |||||
| fa_per_hour: float = item['fa_per_hour'] | |||||
| print(' threshold:', threshold, ' recall:', recall, | |||||
| ' fa_per_hour:', fa_per_hour) | |||||
| if __name__ == '__main__': | |||||
| unittest.main() | |||||
| @@ -0,0 +1,52 @@ | |||||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||||
| import unittest | |||||
| import numpy as np | |||||
| from modelscope.models import Model | |||||
| from modelscope.pipelines import pipeline | |||||
| from modelscope.utils.constant import Tasks | |||||
| from modelscope.utils.test_utils import test_level | |||||
| class MultiModalEmbeddingTest(unittest.TestCase): | |||||
| model_id = 'damo/multi-modal_clip-vit-large-patch14-chinese_multi-modal-embedding' | |||||
| test_text = {'text': '一张风景图'} | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||||
| def test_run(self): | |||||
| pipe_line_multi_modal_embedding = pipeline( | |||||
| Tasks.multi_modal_embedding, model=self.model_id) | |||||
| test_str_embedding = pipe_line_multi_modal_embedding( | |||||
| self.test_text)['text_embedding'] | |||||
| print(np.sum(np.abs(test_str_embedding))) | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||||
| def test_run_with_model_from_modelhub(self): | |||||
| model = Model.from_pretrained(self.model_id) | |||||
| pipe_line_multi_modal_embedding = pipeline( | |||||
| task=Tasks.multi_modal_embedding, model=model) | |||||
| test_str_embedding = pipe_line_multi_modal_embedding( | |||||
| self.test_text)['text_embedding'] | |||||
| print(np.sum(np.abs(test_str_embedding))) | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||||
| def test_run_with_model_name(self): | |||||
| pipe_line_multi_modal_embedding = pipeline( | |||||
| task=Tasks.multi_modal_embedding, model=self.model_id) | |||||
| test_str_embedding = pipe_line_multi_modal_embedding( | |||||
| self.test_text)['text_embedding'] | |||||
| print(np.sum(np.abs(test_str_embedding))) | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||||
| def test_run_with_default_model(self): | |||||
| pipe_line_multi_modal_embedding = pipeline( | |||||
| task=Tasks.multi_modal_embedding) | |||||
| test_str_embedding = pipe_line_multi_modal_embedding( | |||||
| self.test_text)['text_embedding'] | |||||
| print(np.sum(np.abs(test_str_embedding))) | |||||
| if __name__ == '__main__': | |||||
| unittest.main() | |||||
| @@ -34,7 +34,7 @@ class SpeechSignalProcessTest(unittest.TestCase): | |||||
| # A temporary hack to provide c++ lib. Download it first. | # A temporary hack to provide c++ lib. Download it first. | ||||
| download(AEC_LIB_URL, AEC_LIB_FILE) | download(AEC_LIB_URL, AEC_LIB_FILE) | ||||
| @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||||
| def test_run(self): | def test_run(self): | ||||
| download(NEAREND_MIC_URL, NEAREND_MIC_FILE) | download(NEAREND_MIC_URL, NEAREND_MIC_FILE) | ||||
| download(FAREND_SPEECH_URL, FAREND_SPEECH_FILE) | download(FAREND_SPEECH_URL, FAREND_SPEECH_FILE) | ||||
| @@ -3,9 +3,9 @@ import shutil | |||||
| import unittest | import unittest | ||||
| from modelscope.models import Model | from modelscope.models import Model | ||||
| from modelscope.msdatasets import MsDataset | |||||
| from modelscope.pipelines import SequenceClassificationPipeline, pipeline | from modelscope.pipelines import SequenceClassificationPipeline, pipeline | ||||
| from modelscope.preprocessors import SequenceClassificationPreprocessor | from modelscope.preprocessors import SequenceClassificationPreprocessor | ||||
| from modelscope.pydatasets import PyDataset | |||||
| from modelscope.utils.constant import Hubs, Tasks | from modelscope.utils.constant import Hubs, Tasks | ||||
| from modelscope.utils.test_utils import test_level | from modelscope.utils.test_utils import test_level | ||||
| @@ -28,7 +28,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||||
| print(data) | print(data) | ||||
| def printDataset(self, dataset: PyDataset): | |||||
| def printDataset(self, dataset: MsDataset): | |||||
| for i, r in enumerate(dataset): | for i, r in enumerate(dataset): | ||||
| if i > 10: | if i > 10: | ||||
| break | break | ||||
| @@ -50,7 +50,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||||
| text_classification = pipeline( | text_classification = pipeline( | ||||
| task=Tasks.text_classification, model=self.model_id) | task=Tasks.text_classification, model=self.model_id) | ||||
| result = text_classification( | result = text_classification( | ||||
| PyDataset.load( | |||||
| MsDataset.load( | |||||
| 'glue', | 'glue', | ||||
| subset_name='sst2', | subset_name='sst2', | ||||
| split='train', | split='train', | ||||
| @@ -62,7 +62,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||||
| def test_run_with_default_model(self): | def test_run_with_default_model(self): | ||||
| text_classification = pipeline(task=Tasks.text_classification) | text_classification = pipeline(task=Tasks.text_classification) | ||||
| result = text_classification( | result = text_classification( | ||||
| PyDataset.load( | |||||
| MsDataset.load( | |||||
| 'glue', | 'glue', | ||||
| subset_name='sst2', | subset_name='sst2', | ||||
| split='train', | split='train', | ||||
| @@ -78,7 +78,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||||
| text_classification = pipeline( | text_classification = pipeline( | ||||
| Tasks.text_classification, model=model, preprocessor=preprocessor) | Tasks.text_classification, model=model, preprocessor=preprocessor) | ||||
| # loaded from huggingface dataset | # loaded from huggingface dataset | ||||
| dataset = PyDataset.load( | |||||
| dataset = MsDataset.load( | |||||
| 'glue', | 'glue', | ||||
| subset_name='sst2', | subset_name='sst2', | ||||
| split='train', | split='train', | ||||
| @@ -91,7 +91,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||||
| def test_run_with_modelscope_dataset(self): | def test_run_with_modelscope_dataset(self): | ||||
| text_classification = pipeline(task=Tasks.text_classification) | text_classification = pipeline(task=Tasks.text_classification) | ||||
| # loaded from modelscope dataset | # loaded from modelscope dataset | ||||
| dataset = PyDataset.load( | |||||
| dataset = MsDataset.load( | |||||
| 'squad', split='train', target='context', hub=Hubs.modelscope) | 'squad', split='train', target='context', hub=Hubs.modelscope) | ||||
| result = text_classification(dataset) | result = text_classification(dataset) | ||||
| self.printDataset(result) | self.printDataset(result) | ||||