| @@ -1,6 +1,10 @@ | |||
| from typing import Any, Dict, Optional | |||
| import os | |||
| from typing import Any, Dict | |||
| from modelscope.preprocessors.space.fields.intent_field import \ | |||
| IntentBPETextField | |||
| from modelscope.trainers.nlp.space.trainers.intent_trainer import IntentTrainer | |||
| from modelscope.utils.config import Config | |||
| from modelscope.utils.constant import Tasks | |||
| from ...base import Model, Tensor | |||
| from ...builder import MODELS | |||
| @@ -10,7 +14,7 @@ from .model.model_base import ModelBase | |||
| __all__ = ['DialogIntentModel'] | |||
| @MODELS.register_module(Tasks.dialog_intent, module_name=r'space-intent') | |||
| @MODELS.register_module(Tasks.dialog_intent, module_name=r'space') | |||
| class DialogIntentModel(Model): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| @@ -24,8 +28,14 @@ class DialogIntentModel(Model): | |||
| super().__init__(model_dir, *args, **kwargs) | |||
| self.model_dir = model_dir | |||
| self.text_field = kwargs.pop('text_field') | |||
| self.config = kwargs.pop('config') | |||
| self.config = kwargs.pop( | |||
| 'config', | |||
| Config.from_file( | |||
| os.path.join(self.model_dir, 'configuration.json'))) | |||
| self.text_field = kwargs.pop( | |||
| 'text_field', | |||
| IntentBPETextField(self.model_dir, config=self.config)) | |||
| self.generator = Generator.create(self.config, reader=self.text_field) | |||
| self.model = ModelBase.create( | |||
| model_dir=model_dir, | |||
| @@ -63,9 +73,8 @@ class DialogIntentModel(Model): | |||
| 'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value | |||
| } | |||
| """ | |||
| from numpy import array, float32 | |||
| import torch | |||
| print('--forward--') | |||
| result = self.trainer.forward(input) | |||
| import numpy as np | |||
| pred = self.trainer.forward(input) | |||
| pred = np.squeeze(pred[0], 0) | |||
| return result | |||
| return {'pred': pred} | |||
| @@ -9,7 +9,7 @@ from ...builder import PIPELINES | |||
| __all__ = ['DialogIntentPipeline'] | |||
| @PIPELINES.register_module(Tasks.dialog_intent, module_name=r'space-intent') | |||
| @PIPELINES.register_module(Tasks.dialog_intent, module_name=r'space') | |||
| class DialogIntentPipeline(Pipeline): | |||
| def __init__(self, model: DialogIntentModel, | |||
| @@ -34,5 +34,10 @@ class DialogIntentPipeline(Pipeline): | |||
| Returns: | |||
| Dict[str, str]: the prediction results | |||
| """ | |||
| import numpy as np | |||
| pred = inputs['pred'] | |||
| pos = np.where(pred == np.max(pred)) | |||
| return inputs | |||
| result = {'pred': pred, 'label': pos[0]} | |||
| return result | |||
| @@ -1,13 +1,12 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| import os | |||
| import uuid | |||
| from typing import Any, Dict, Union | |||
| from typing import Any, Dict | |||
| from modelscope.preprocessors.space.fields.intent_field import \ | |||
| IntentBPETextField | |||
| from modelscope.utils.config import Config | |||
| from modelscope.utils.constant import Fields, InputFields | |||
| from modelscope.utils.constant import Fields | |||
| from modelscope.utils.type_assert import type_assert | |||
| from ..base import Preprocessor | |||
| from ..builder import PREPROCESSORS | |||
| @@ -15,7 +14,7 @@ from ..builder import PREPROCESSORS | |||
| __all__ = ['DialogIntentPreprocessor'] | |||
| @PREPROCESSORS.register_module(Fields.nlp, module_name=r'space-intent') | |||
| @PREPROCESSORS.register_module(Fields.nlp, module_name=r'space') | |||
| class DialogIntentPreprocessor(Preprocessor): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| @@ -508,7 +508,6 @@ class IntentTrainer(Trainer): | |||
| report_for_unlabeled_data, cur_valid_metric=-accuracy) | |||
| def forward(self, batch): | |||
| outputs, labels = [], [] | |||
| pred, true = [], [] | |||
| with torch.no_grad(): | |||
| @@ -522,12 +521,10 @@ class IntentTrainer(Trainer): | |||
| intent_probs = result['intent_probs'] | |||
| if self.can_norm: | |||
| pred += [intent_probs] | |||
| true += batch['intent_label'].cpu().detach().tolist() | |||
| else: | |||
| pred += np.argmax(intent_probs, axis=1).tolist() | |||
| true += batch['intent_label'].cpu().detach().tolist() | |||
| return {'pred': pred} | |||
| return pred | |||
| def infer(self, data_iter, num_batches=None, ex_data_iter=None): | |||
| """ | |||
| @@ -1,76 +0,0 @@ | |||
| test_case = { | |||
| 'sng0073': { | |||
| 'goal': { | |||
| 'taxi': { | |||
| 'info': { | |||
| 'leaveat': '17:15', | |||
| 'destination': 'pizza hut fen ditton', | |||
| 'departure': "saint john's college" | |||
| }, | |||
| 'reqt': ['car', 'phone'], | |||
| 'fail_info': {} | |||
| } | |||
| }, | |||
| 'log': [{ | |||
| 'user': | |||
| "i would like a taxi from saint john 's college to pizza hut fen ditton .", | |||
| 'user_delex': | |||
| 'i would like a taxi from [value_departure] to [value_destination] .', | |||
| 'resp': | |||
| 'what time do you want to leave and what time do you want to arrive by ?', | |||
| 'sys': | |||
| 'what time do you want to leave and what time do you want to arrive by ?', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college", | |||
| 'cons_delex': '[taxi] destination departure', | |||
| 'sys_act': '[taxi] [request] leave arrive', | |||
| 'turn_num': 0, | |||
| 'turn_domain': '[taxi]' | |||
| }, { | |||
| 'user': 'i want to leave after 17:15 .', | |||
| 'user_delex': 'i want to leave after [value_leave] .', | |||
| 'resp': | |||
| 'booking completed ! your taxi will be [value_car] contact number is [value_phone]', | |||
| 'sys': | |||
| 'booking completed ! your taxi will be blue honda contact number is 07218068540', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[taxi] [inform] car phone', | |||
| 'turn_num': 1, | |||
| 'turn_domain': '[taxi]' | |||
| }, { | |||
| 'user': 'thank you for all the help ! i appreciate it .', | |||
| 'user_delex': 'thank you for all the help ! i appreciate it .', | |||
| 'resp': | |||
| 'you are welcome . is there anything else i can help you with today ?', | |||
| 'sys': | |||
| 'you are welcome . is there anything else i can help you with today ?', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[general] [reqmore]', | |||
| 'turn_num': 2, | |||
| 'turn_domain': '[general]' | |||
| }, { | |||
| 'user': 'no , i am all set . have a nice day . bye .', | |||
| 'user_delex': 'no , i am all set . have a nice day . bye .', | |||
| 'resp': 'you too ! thank you', | |||
| 'sys': 'you too ! thank you', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[general] [bye]', | |||
| 'turn_num': 3, | |||
| 'turn_domain': '[general]' | |||
| }] | |||
| } | |||
| } | |||
| @@ -1,4 +0,0 @@ | |||
| test_case = [ | |||
| 'How do I locate my card?', | |||
| 'I still have not received my new card, I ordered over a week ago.' | |||
| ] | |||
| @@ -4,8 +4,6 @@ import os.path as osp | |||
| import tempfile | |||
| import unittest | |||
| from tests.case.nlp.dialog_generation_case import test_case | |||
| from modelscope.models.nlp import DialogGenerationModel | |||
| from modelscope.pipelines import DialogGenerationPipeline, pipeline | |||
| from modelscope.preprocessors import DialogGenerationPreprocessor | |||
| @@ -16,6 +14,82 @@ def merge(info, result): | |||
| class DialogGenerationTest(unittest.TestCase): | |||
| test_case = { | |||
| 'sng0073': { | |||
| 'goal': { | |||
| 'taxi': { | |||
| 'info': { | |||
| 'leaveat': '17:15', | |||
| 'destination': 'pizza hut fen ditton', | |||
| 'departure': "saint john's college" | |||
| }, | |||
| 'reqt': ['car', 'phone'], | |||
| 'fail_info': {} | |||
| } | |||
| }, | |||
| 'log': [{ | |||
| 'user': | |||
| "i would like a taxi from saint john 's college to pizza hut fen ditton .", | |||
| 'user_delex': | |||
| 'i would like a taxi from [value_departure] to [value_destination] .', | |||
| 'resp': | |||
| 'what time do you want to leave and what time do you want to arrive by ?', | |||
| 'sys': | |||
| 'what time do you want to leave and what time do you want to arrive by ?', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college", | |||
| 'cons_delex': '[taxi] destination departure', | |||
| 'sys_act': '[taxi] [request] leave arrive', | |||
| 'turn_num': 0, | |||
| 'turn_domain': '[taxi]' | |||
| }, { | |||
| 'user': 'i want to leave after 17:15 .', | |||
| 'user_delex': 'i want to leave after [value_leave] .', | |||
| 'resp': | |||
| 'booking completed ! your taxi will be [value_car] contact number is [value_phone]', | |||
| 'sys': | |||
| 'booking completed ! your taxi will be blue honda contact number is 07218068540', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[taxi] [inform] car phone', | |||
| 'turn_num': 1, | |||
| 'turn_domain': '[taxi]' | |||
| }, { | |||
| 'user': 'thank you for all the help ! i appreciate it .', | |||
| 'user_delex': 'thank you for all the help ! i appreciate it .', | |||
| 'resp': | |||
| 'you are welcome . is there anything else i can help you with today ?', | |||
| 'sys': | |||
| 'you are welcome . is there anything else i can help you with today ?', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[general] [reqmore]', | |||
| 'turn_num': 2, | |||
| 'turn_domain': '[general]' | |||
| }, { | |||
| 'user': 'no , i am all set . have a nice day . bye .', | |||
| 'user_delex': 'no , i am all set . have a nice day . bye .', | |||
| 'resp': 'you too ! thank you', | |||
| 'sys': 'you too ! thank you', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[general] [bye]', | |||
| 'turn_num': 3, | |||
| 'turn_domain': '[general]' | |||
| }] | |||
| } | |||
| } | |||
| def test_run(self): | |||
| @@ -1,11 +1,9 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| import os | |||
| import os.path as osp | |||
| import tempfile | |||
| import unittest | |||
| from tests.case.nlp.dialog_intent_case import test_case | |||
| from maas_hub.snapshot_download import snapshot_download | |||
| from modelscope.models import Model | |||
| from modelscope.models.nlp import DialogIntentModel | |||
| from modelscope.pipelines import DialogIntentPipeline, pipeline | |||
| from modelscope.preprocessors import DialogIntentPreprocessor | |||
| @@ -13,22 +11,46 @@ from modelscope.utils.constant import Tasks | |||
| class DialogGenerationTest(unittest.TestCase): | |||
| model_id = 'damo/nlp_space_dialog-intent' | |||
| test_case = [ | |||
| 'How do I locate my card?', | |||
| 'I still have not received my new card, I ordered over a week ago.' | |||
| ] | |||
| @unittest.skip('test with snapshot_download') | |||
| def test_run(self): | |||
| modeldir = '/Users/yangliu/Desktop/space-dialog-intent' | |||
| preprocessor = DialogIntentPreprocessor(model_dir=modeldir) | |||
| cache_path = snapshot_download(self.model_id) | |||
| preprocessor = DialogIntentPreprocessor(model_dir=cache_path) | |||
| model = DialogIntentModel( | |||
| model_dir=modeldir, | |||
| model_dir=cache_path, | |||
| text_field=preprocessor.text_field, | |||
| config=preprocessor.config) | |||
| pipeline1 = DialogIntentPipeline( | |||
| model=model, preprocessor=preprocessor) | |||
| # pipeline1 = pipeline(task=Tasks.dialog_intent, model=model, preprocessor=preprocessor) | |||
| for item in test_case: | |||
| print(pipeline1(item)) | |||
| pipelines = [ | |||
| DialogIntentPipeline(model=model, preprocessor=preprocessor), | |||
| pipeline( | |||
| task=Tasks.dialog_intent, | |||
| model=model, | |||
| preprocessor=preprocessor) | |||
| ] | |||
| for my_pipeline, item in list(zip(pipelines, self.test_case)): | |||
| print(my_pipeline(item)) | |||
| def test_run_with_model_from_modelhub(self): | |||
| model = Model.from_pretrained(self.model_id) | |||
| preprocessor = DialogIntentPreprocessor(model_dir=model.model_dir) | |||
| pipelines = [ | |||
| DialogIntentPipeline(model=model, preprocessor=preprocessor), | |||
| pipeline( | |||
| task=Tasks.dialog_intent, | |||
| model=model, | |||
| preprocessor=preprocessor) | |||
| ] | |||
| for my_pipeline, item in list(zip(pipelines, self.test_case)): | |||
| print(my_pipeline(item)) | |||
| if __name__ == '__main__': | |||