1. Support `ReduceLROnPlateau` lr scheduler, and add `PlateauLrSchedulerHook` for it
2. Support custom `optimizer_hook` and `lr_scheduler_hook`
3. Remove function of save best ckpt from `EvaluationHook`, replace with `BestCkptSaverHook`
4. `evaluation_loop` return metric values directly,move metric computation to `single_gpu_test` and `multi_gpu_test`
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9584322
* [to #43627720] support ReduceLROnPlateau and fix lr scheduler
master
| @@ -1,6 +1,6 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| from .builder import HOOKS, build_hook | |||
| from .checkpoint_hook import CheckpointHook | |||
| from .checkpoint_hook import BestCkptSaverHook, CheckpointHook | |||
| from .evaluation_hook import EvaluationHook | |||
| from .hook import Hook | |||
| from .iter_timer_hook import IterTimerHook | |||
| @@ -13,5 +13,6 @@ from .priority import Priority | |||
| __all__ = [ | |||
| 'Hook', 'HOOKS', 'CheckpointHook', 'EvaluationHook', 'LrSchedulerHook', | |||
| 'OptimizerHook', 'Priority', 'build_hook', 'TextLoggerHook', | |||
| 'IterTimerHook', 'TorchAMPOptimizerHook', 'ApexAMPOptimizerHook' | |||
| 'IterTimerHook', 'TorchAMPOptimizerHook', 'ApexAMPOptimizerHook', | |||
| 'BestCkptSaverHook' | |||
| ] | |||
| @@ -42,6 +42,9 @@ class CheckpointHook(Hook): | |||
| if not self.save_dir: | |||
| self.save_dir = trainer.work_dir | |||
| if not os.path.exists(self.save_dir) and is_master(): | |||
| os.makedirs(self.save_dir) | |||
| if not hasattr(trainer, 'logger'): | |||
| self.logger = get_logger(__name__) | |||
| else: | |||
| @@ -93,3 +96,72 @@ class CheckpointHook(Hook): | |||
| and check_last(trainer)): | |||
| return True | |||
| return False | |||
| @HOOKS.register_module() | |||
| class BestCkptSaverHook(CheckpointHook): | |||
| """Save best checkpoints hook. | |||
| Args: | |||
| metric_key (str): Metric key to compare rule for best score. | |||
| rule (str): Comparison rule for best score. | |||
| Support "max" and "min". If rule is "max", the checkpoint at the maximum `metric_key` | |||
| will be saved, If rule is "min", the checkpoint at the minimum `metric_key` will be saved. | |||
| by_epoch (bool): Save best checkpoints by epoch or by iteration. | |||
| save_optimizer (bool): Whether to save optimizer state dict. Default: True. | |||
| save_dir (str): Output directory to save best checkpoint. | |||
| """ | |||
| PRIORITY = Priority.NORMAL | |||
| rule_map = {'max': lambda x, y: x > y, 'min': lambda x, y: x < y} | |||
| def __init__(self, | |||
| metric_key, | |||
| rule='max', | |||
| by_epoch=True, | |||
| save_optimizer=True, | |||
| save_dir=None): | |||
| assert rule in ['max', 'min'], 'Only support "max" or "min" rule now.' | |||
| super().__init__( | |||
| by_epoch=by_epoch, | |||
| save_optimizer=save_optimizer, | |||
| save_dir=save_dir, | |||
| ) | |||
| self.metric_key = metric_key | |||
| self.rule = rule | |||
| self._best_metric = None | |||
| self._best_ckpt_file = None | |||
| def _should_save(self, trainer): | |||
| return self._is_best_metric(trainer.metric_values) | |||
| def _is_best_metric(self, metric_values): | |||
| if metric_values is None: | |||
| return False | |||
| if self.metric_key not in metric_values: | |||
| raise ValueError( | |||
| f'Not find metric_key: {self.metric_key} in {metric_values}') | |||
| if self._best_metric is None: | |||
| self._best_metric = metric_values[self.metric_key] | |||
| return True | |||
| else: | |||
| compare_fn = self.rule_map[self.rule] | |||
| if compare_fn(metric_values[self.metric_key], self._best_metric): | |||
| self._best_metric = metric_values[self.metric_key] | |||
| return True | |||
| return False | |||
| def _save_checkpoint(self, trainer): | |||
| if self.by_epoch: | |||
| cur_save_name = os.path.join( | |||
| self.save_dir, | |||
| f'best_{LogKeys.EPOCH}{trainer.epoch + 1}_{self.metric_key}{self._best_metric}.pth' | |||
| ) | |||
| else: | |||
| cur_save_name = os.path.join( | |||
| self.save_dir, | |||
| f'best_{LogKeys.ITER}{trainer.iter + 1}_{self.metric_key}{self._best_metric}.pth' | |||
| ) | |||
| save_checkpoint(trainer.model, cur_save_name, trainer.optimizer) | |||
| self._best_ckpt_file = cur_save_name | |||
| @@ -1,13 +1,6 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| import os | |||
| from modelscope.utils.checkpoint import save_checkpoint | |||
| from modelscope.utils.constant import LogKeys | |||
| from modelscope.utils.logger import get_logger | |||
| from modelscope.utils.torch_utils import get_dist_info | |||
| from .builder import HOOKS | |||
| from .hook import Hook | |||
| from .priority import Priority | |||
| @HOOKS.register_module() | |||
| @@ -18,56 +11,13 @@ class EvaluationHook(Hook): | |||
| by_epoch (bool): Evaluate by epoch or by iteration. | |||
| start_idx (int | None, optional): The epoch/iterations validation begins. | |||
| Default: None, validate every interval epochs/iterations from scratch. | |||
| save_best_ckpt (bool): Whether save the best checkpoint during evaluation. | |||
| monitor_key (str): Monitor key to compare rule for best score, only valid when `save_best_ckpt` is true. | |||
| rule (str): Comparison rule for best score, only valid when `save_best_ckpt` is true. | |||
| Support "max" and "min". If rule is "max", the checkpoint at the maximum `monitor_key` | |||
| will be saved, If rule is "min", the checkpoint at the minimum `monitor_key` will be saved. | |||
| out_dir (str): Output directory to save best checkpoint. | |||
| """ | |||
| PRIORITY = Priority.NORMAL | |||
| rule_map = {'max': lambda x, y: x > y, 'min': lambda x, y: x < y} | |||
| def __init__(self, | |||
| interval=1, | |||
| by_epoch=True, | |||
| start_idx=None, | |||
| save_best_ckpt=False, | |||
| monitor_key=None, | |||
| rule='max', | |||
| out_dir=None): | |||
| def __init__(self, interval=1, by_epoch=True, start_idx=None): | |||
| assert interval > 0, 'interval must be a positive number' | |||
| if save_best_ckpt: | |||
| assert monitor_key is not None, 'Must provide `monitor_key` when `save_best_ckpt` is True.' | |||
| assert rule in ['max', | |||
| 'min'], 'Only support "max" or "min" rule now.' | |||
| self.interval = interval | |||
| self.start_idx = start_idx | |||
| self.by_epoch = by_epoch | |||
| self.save_best_ckpt = save_best_ckpt | |||
| self.monitor_key = monitor_key | |||
| self.rule = rule | |||
| self.out_dir = out_dir | |||
| self._best_metric = None | |||
| self._best_ckpt_file = None | |||
| def before_run(self, trainer): | |||
| if not self.out_dir: | |||
| self.out_dir = trainer.work_dir | |||
| if not os.path.exists(self.out_dir): | |||
| rank, _ = get_dist_info() | |||
| if rank == 0: | |||
| os.makedirs(self.out_dir) | |||
| if self.save_best_ckpt: | |||
| if not hasattr(trainer, 'logger'): | |||
| self.logger = get_logger(__name__) | |||
| else: | |||
| self.logger = trainer.logger | |||
| self.logger.info( | |||
| f'Best checkpoint will be saved to {self.out_dir}') | |||
| def after_train_iter(self, trainer): | |||
| """Called after every training iter to evaluate the results.""" | |||
| @@ -87,46 +37,6 @@ class EvaluationHook(Hook): | |||
| trainer.log_buffer.ready = True | |||
| if self.save_best_ckpt and self._is_best_metric(eval_res): | |||
| # remove the previous best model and save the latest best model | |||
| if self._best_ckpt_file is not None and os.path.exists( | |||
| self._best_ckpt_file): | |||
| os.remove(self._best_ckpt_file) | |||
| self._save_checkpoint(trainer) | |||
| def _is_best_metric(self, eval_res): | |||
| if self.monitor_key not in eval_res: | |||
| raise ValueError( | |||
| f'Not find monitor_key: {self.monitor_key} in {eval_res}') | |||
| if self._best_metric is None: | |||
| self._best_metric = eval_res[self.monitor_key] | |||
| return True | |||
| else: | |||
| compare_fn = self.rule_map[self.rule] | |||
| if compare_fn(eval_res[self.monitor_key], self._best_metric): | |||
| self._best_metric = eval_res[self.monitor_key] | |||
| return True | |||
| return False | |||
| def _save_checkpoint(self, trainer): | |||
| if self.by_epoch: | |||
| cur_save_name = os.path.join( | |||
| self.out_dir, | |||
| f'best_{LogKeys.EPOCH}{trainer.epoch + 1}_{self.monitor_key}{self._best_metric}.pth' | |||
| ) | |||
| else: | |||
| cur_save_name = os.path.join( | |||
| self.out_dir, | |||
| f'best_{LogKeys.ITER}{trainer.iter + 1}_{self.monitor_key}{self._best_metric}.pth' | |||
| ) | |||
| rank, _ = get_dist_info() | |||
| if rank == 0: | |||
| save_checkpoint(trainer.model, cur_save_name, trainer.optimizer) | |||
| self._best_ckpt_file = cur_save_name | |||
| def _should_evaluate(self, trainer): | |||
| """Judge whether to perform evaluation. | |||
| @@ -1,6 +1,8 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| from modelscope.trainers.lrscheduler.builder import build_lr_scheduler | |||
| from modelscope.utils.constant import LogKeys | |||
| from modelscope.utils.logger import get_logger | |||
| from modelscope.utils.torch_utils import is_master | |||
| from .builder import HOOKS | |||
| from .hook import Hook | |||
| from .priority import Priority | |||
| @@ -50,12 +52,14 @@ class LrSchedulerHook(Hook): | |||
| trainer.log_buffer.output[LogKeys.LR] = self._get_log_lr(trainer) | |||
| def before_train_epoch(self, trainer): | |||
| trainer.log_buffer.output[LogKeys.LR] = self._get_log_lr(trainer) | |||
| def after_train_epoch(self, trainer): | |||
| if self.by_epoch: | |||
| if self.warmup_lr_scheduler is not None: | |||
| self.warmup_lr_scheduler.step() | |||
| else: | |||
| trainer.lr_scheduler.step() | |||
| trainer.log_buffer.output[LogKeys.LR] = self._get_log_lr(trainer) | |||
| def _get_log_lr(self, trainer): | |||
| cur_lr = self.get_current_lr(trainer) | |||
| @@ -70,3 +74,44 @@ class LrSchedulerHook(Hook): | |||
| lr.update({k: lr_[0]}) | |||
| return lr | |||
| @HOOKS.register_module() | |||
| class PlateauLrSchedulerHook(LrSchedulerHook): | |||
| """Lr scheduler hook for `ReduceLROnPlateau`. | |||
| Args: | |||
| metric_key (str): Metric key returned from `trainer.metric_values`, | |||
| get the value of metric key and pass it to `ReduceLROnPlateau.step`. | |||
| by_epoch (bool): Whether lr changes by epoch | |||
| warmup (dict): warm up config | |||
| """ | |||
| PRIORITY = Priority.LOW # should be after EvaluationHook | |||
| def __init__(self, metric_key, by_epoch=True, warmup=None) -> None: | |||
| super().__init__(by_epoch=by_epoch, warmup=warmup) | |||
| self.metric_key = metric_key | |||
| def before_run(self, trainer): | |||
| super().before_run(trainer) | |||
| if not hasattr(trainer, 'logger'): | |||
| self.logger = get_logger(__name__) | |||
| else: | |||
| self.logger = trainer.logger | |||
| def after_train_epoch(self, trainer): | |||
| # adapt to evaluation intervel is greater than 1 | |||
| if trainer.metric_values is None: | |||
| if is_master(): | |||
| self.logger.warning( | |||
| f'Current epoch {trainer.epoch} has no evaluation metric values, skip lr_scheduler.step() !' | |||
| ) | |||
| return | |||
| metrics = trainer.metric_values[self.metric_key] | |||
| if self.by_epoch: | |||
| if self.warmup_lr_scheduler is not None: | |||
| self.warmup_lr_scheduler.step(metrics=metrics) | |||
| else: | |||
| trainer.lr_scheduler.step(metrics=metrics) | |||
| @@ -40,7 +40,8 @@ def register_torch_lr_scheduler(): | |||
| members = inspect.getmembers(lr_scheduler) | |||
| for name, obj in members: | |||
| if inspect.isclass(obj) and issubclass(obj, _LRScheduler): | |||
| if (inspect.isclass(obj) and issubclass( | |||
| obj, _LRScheduler)) or name in ['ReduceLROnPlateau']: | |||
| LR_SCHEDULER.register_module(module_name=name, module_cls=obj) | |||
| @@ -52,12 +52,12 @@ class BaseWarmup(_LRScheduler): | |||
| for i, group in enumerate(self.optimizer.param_groups): | |||
| group['lr'] *= scale_value[i] | |||
| def step(self, epoch=None): | |||
| def step(self, *args, **kwargs): | |||
| """ | |||
| When ``self.base_scheduler._step_count`` is less than ``self.warmup_iters``, multiply lr by scale | |||
| """ | |||
| if self.base_scheduler._step_count > self.warmup_iters: | |||
| return self.base_scheduler.step(epoch=epoch) | |||
| return self.base_scheduler.step(*args, **kwargs) | |||
| for group, lr in zip(self.optimizer.param_groups, self.base_lrs): | |||
| group['lr'] = lr | |||
| @@ -66,7 +66,7 @@ class BaseWarmup(_LRScheduler): | |||
| if self._is_init_step: | |||
| self._is_init_step = False | |||
| else: | |||
| self.base_scheduler.step(epoch=epoch) | |||
| self.base_scheduler.step(*args, **kwargs) | |||
| self.scale() | |||
| @@ -7,6 +7,7 @@ from distutils.version import LooseVersion | |||
| from functools import partial | |||
| from typing import Callable, List, Optional, Tuple, Union | |||
| import json | |||
| import numpy as np | |||
| import torch | |||
| from addict import Dict | |||
| @@ -135,6 +136,7 @@ class EpochBasedTrainer(BaseTrainer): | |||
| self.data_collator = data_collator if data_collator is not None else torch_default_data_collator | |||
| self.metrics = self.get_metrics() | |||
| self._metric_values = None | |||
| self.optimizers = optimizers | |||
| self.logger = get_logger(log_level=self.cfg.get('log_level', 'INFO')) | |||
| self._mode = ModeKeys.TRAIN | |||
| @@ -322,17 +324,16 @@ class EpochBasedTrainer(BaseTrainer): | |||
| **self.cfg.evaluation.get('dataloader', {})) | |||
| self.data_loader = self.eval_dataloader | |||
| metric_classes = [build_metric(metric) for metric in self.metrics] | |||
| self.evaluation_loop(self.eval_dataloader, checkpoint_path, | |||
| metric_classes) | |||
| rank, world_size = get_dist_info() | |||
| metric_values = {} | |||
| if rank == 0: | |||
| for metric_cls in metric_classes: | |||
| metric_values.update(metric_cls.evaluate()) | |||
| if world_size > 1: | |||
| metric_values = broadcast(metric_values, 0) | |||
| metric_values = self.evaluation_loop(self.eval_dataloader, | |||
| checkpoint_path, metric_classes) | |||
| self._metric_values = metric_values | |||
| return metric_values | |||
| @property | |||
| def metric_values(self): | |||
| return self._metric_values | |||
| def build_model(self) -> Union[nn.Module, TorchModel]: | |||
| """ Instantiate a pytorch model and return. | |||
| @@ -530,8 +531,6 @@ class EpochBasedTrainer(BaseTrainer): | |||
| We provide a default implementation, if you want to customize your own optimizer | |||
| and lr scheduler, you can either pass a tuple through trainer init function or | |||
| subclass this class and override this method. | |||
| """ | |||
| optimizer, lr_scheduler = self.optimizers | |||
| if optimizer is None: | |||
| @@ -563,22 +562,38 @@ class EpochBasedTrainer(BaseTrainer): | |||
| def register_optimizers_hook(self): | |||
| """ Register optimizer hook and lr scheduler hook. | |||
| """ | |||
| optimizer, lr_scheduler = self.optimizers | |||
| opti_error_msg = 'optimizers should be a tuple of `torch.optim.Optimizer`'\ | |||
| ' and `torch.optim.lr_scheduler._LRScheduler`' | |||
| if optimizer is not None: | |||
| assert isinstance(optimizer, torch.optim.Optimizer), opti_error_msg | |||
| if lr_scheduler is not None: | |||
| assert isinstance( | |||
| lr_scheduler, | |||
| torch.optim.lr_scheduler._LRScheduler), opti_error_msg | |||
| _, lr_scheduler, optim_options, lr_options = self.create_optimizer_and_scheduler( | |||
| ) | |||
| _, _, optim_options, lr_options = self.create_optimizer_and_scheduler() | |||
| lr_hook = dict(type='LrSchedulerHook', **lr_options) | |||
| if self.use_fp16: | |||
| optim_hook = dict(type='TorchAMPOptimizerHook', **optim_options) | |||
| else: | |||
| optim_hook = dict(type='OptimizerHook', **optim_options) | |||
| optim_hook = self.cfg.train.get('optimizer_hook', None) | |||
| lr_hook = self.cfg.train.get('lr_scheduler_hook', None) | |||
| # adapt to `ReduceLROnPlateau` | |||
| from torch.optim.lr_scheduler import ReduceLROnPlateau | |||
| if isinstance(lr_scheduler, ReduceLROnPlateau) and lr_hook is None: | |||
| plateau_cfg = { | |||
| 'train': { | |||
| 'lr_scheduler_hook': { | |||
| 'type': 'PlateauLrSchedulerHook', | |||
| 'metric_key': | |||
| 'Metric Key used for PlateauLrSchedulerHook' | |||
| } | |||
| } | |||
| } | |||
| plateau_cfg = json.dumps( | |||
| plateau_cfg, sort_keys=False, indent=4, separators=(',', ':')) | |||
| raise ValueError( | |||
| 'Must add `lr_scheduler_hook` to configuration for `ReduceLROnPlateau` lr scheduler as follows:' | |||
| + '\n' + plateau_cfg) | |||
| if lr_hook is None: | |||
| lr_hook = dict(type='LrSchedulerHook', **lr_options) | |||
| if optim_hook is None: | |||
| if self.use_fp16: | |||
| optim_hook = dict( | |||
| type='TorchAMPOptimizerHook', **optim_options) | |||
| else: | |||
| optim_hook = dict(type='OptimizerHook', **optim_options) | |||
| self.register_hook_from_cfg([lr_hook, optim_hook]) | |||
| @@ -692,7 +707,7 @@ class EpochBasedTrainer(BaseTrainer): | |||
| """ | |||
| if self._dist: | |||
| from modelscope.trainers.utils.inference import multi_gpu_test | |||
| multi_gpu_test( | |||
| metric_values = multi_gpu_test( | |||
| self.model, | |||
| data_loader, | |||
| tmpdir=None, | |||
| @@ -701,12 +716,14 @@ class EpochBasedTrainer(BaseTrainer): | |||
| metric_classes=metric_classes) | |||
| else: | |||
| from modelscope.trainers.utils.inference import single_gpu_test | |||
| single_gpu_test( | |||
| metric_values = single_gpu_test( | |||
| self.model, | |||
| data_loader, | |||
| data_collate_fn=self.collate_fn, | |||
| metric_classes=metric_classes) | |||
| return metric_values | |||
| def register_hook(self, hook: Hook) -> None: | |||
| """Register a hook into the hook list. | |||
| @@ -10,7 +10,8 @@ import torch | |||
| from torch import distributed as dist | |||
| from tqdm import tqdm | |||
| from modelscope.utils.torch_utils import get_dist_info, is_master, make_tmp_dir | |||
| from modelscope.utils.torch_utils import (broadcast, get_dist_info, is_master, | |||
| make_tmp_dir) | |||
| from modelscope.utils.utils import if_func_receive_dict_inputs | |||
| @@ -51,6 +52,12 @@ def single_gpu_test(model, | |||
| for _ in range(batch_size): | |||
| pbar.update() | |||
| metric_values = {} | |||
| for metric_cls in metric_classes: | |||
| metric_values.update(metric_cls.evaluate()) | |||
| return metric_values | |||
| def multi_gpu_test(model, | |||
| data_loader, | |||
| @@ -132,6 +139,15 @@ def multi_gpu_test(model, | |||
| for metric_cls in metric_classes: | |||
| metric_cls.add(results[i], data_list[i]) | |||
| metric_values = {} | |||
| if rank == 0: | |||
| for metric_cls in metric_classes: | |||
| metric_values.update(metric_cls.evaluate()) | |||
| if world_size > 1: | |||
| metric_values = broadcast(metric_values, 0) | |||
| return metric_values | |||
| def collect_results_cpu(result_part, size, tmpdir=None): | |||
| """Collect results under cpu mode. | |||
| @@ -56,7 +56,8 @@ class Registry(object): | |||
| def _register_module(self, | |||
| group_key=default_group, | |||
| module_name=None, | |||
| module_cls=None): | |||
| module_cls=None, | |||
| force=False): | |||
| assert isinstance(group_key, | |||
| str), 'group_key is required and must be str' | |||
| @@ -69,7 +70,7 @@ class Registry(object): | |||
| if module_name is None: | |||
| module_name = module_cls.__name__ | |||
| if module_name in self._modules[group_key]: | |||
| if module_name in self._modules[group_key] and not force: | |||
| raise KeyError(f'{module_name} is already registered in ' | |||
| f'{self._name}[{group_key}]') | |||
| self._modules[group_key][module_name] = module_cls | |||
| @@ -78,7 +79,8 @@ class Registry(object): | |||
| def register_module(self, | |||
| group_key: str = default_group, | |||
| module_name: str = None, | |||
| module_cls: type = None): | |||
| module_cls: type = None, | |||
| force=False): | |||
| """ Register module | |||
| Example: | |||
| @@ -102,6 +104,8 @@ class Registry(object): | |||
| default group name is 'default' | |||
| module_name: Module name | |||
| module_cls: Module class object | |||
| force (bool, optional): Whether to override an existing class with | |||
| the same name. Default: False. | |||
| """ | |||
| if not (module_name is None or isinstance(module_name, str)): | |||
| @@ -111,7 +115,8 @@ class Registry(object): | |||
| self._register_module( | |||
| group_key=group_key, | |||
| module_name=module_name, | |||
| module_cls=module_cls) | |||
| module_cls=module_cls, | |||
| force=force) | |||
| return module_cls | |||
| # if module_cls is None, should return a decorator function | |||
| @@ -119,7 +124,8 @@ class Registry(object): | |||
| self._register_module( | |||
| group_key=group_key, | |||
| module_name=module_name, | |||
| module_cls=module_cls) | |||
| module_cls=module_cls, | |||
| force=force) | |||
| return module_cls | |||
| return _register | |||
| @@ -99,7 +99,7 @@ class TensorboardHookTest(unittest.TestCase): | |||
| ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.001) | |||
| for i in range(5, 10): | |||
| self.assertAlmostEqual( | |||
| ea.Scalars(LogKeys.LR)[i].value, 0.001, delta=0.0001) | |||
| ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.0001) | |||
| if __name__ == '__main__': | |||
| @@ -9,10 +9,31 @@ import numpy as np | |||
| import torch | |||
| from torch import nn | |||
| from modelscope.metrics.builder import METRICS, MetricKeys | |||
| from modelscope.trainers import build_trainer | |||
| from modelscope.utils.constant import LogKeys, ModelFile | |||
| from modelscope.utils.registry import default_group | |||
| from modelscope.utils.test_utils import create_dummy_test_dataset | |||
| def create_dummy_metric(): | |||
| _global_iter = 0 | |||
| @METRICS.register_module( | |||
| group_key=default_group, module_name='DummyMetric', force=True) | |||
| class DummyMetric: | |||
| _fake_acc_by_epoch = {1: 0.1, 2: 0.5, 3: 0.2} | |||
| def add(*args, **kwargs): | |||
| pass | |||
| def evaluate(self): | |||
| global _global_iter | |||
| _global_iter += 1 | |||
| return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]} | |||
| dummy_dataset = create_dummy_test_dataset( | |||
| np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20) | |||
| @@ -39,12 +60,16 @@ class CheckpointHookTest(unittest.TestCase): | |||
| self.tmp_dir = tempfile.TemporaryDirectory().name | |||
| if not os.path.exists(self.tmp_dir): | |||
| os.makedirs(self.tmp_dir) | |||
| create_dummy_metric() | |||
| def tearDown(self): | |||
| super().tearDown() | |||
| shutil.rmtree(self.tmp_dir) | |||
| def test_checkpoint_hook(self): | |||
| global _global_iter | |||
| _global_iter = 0 | |||
| json_cfg = { | |||
| 'task': 'image_classification', | |||
| 'train': { | |||
| @@ -98,5 +123,80 @@ class CheckpointHookTest(unittest.TestCase): | |||
| self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files) | |||
| class BestCkptSaverHookTest(unittest.TestCase): | |||
| def setUp(self): | |||
| print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) | |||
| self.tmp_dir = tempfile.TemporaryDirectory().name | |||
| if not os.path.exists(self.tmp_dir): | |||
| os.makedirs(self.tmp_dir) | |||
| create_dummy_metric() | |||
| def tearDown(self): | |||
| super().tearDown() | |||
| shutil.rmtree(self.tmp_dir) | |||
| def test_best_checkpoint_hook(self): | |||
| global _global_iter | |||
| _global_iter = 0 | |||
| json_cfg = { | |||
| 'task': 'image_classification', | |||
| 'train': { | |||
| 'work_dir': | |||
| self.tmp_dir, | |||
| 'dataloader': { | |||
| 'batch_size_per_gpu': 2, | |||
| 'workers_per_gpu': 1 | |||
| }, | |||
| 'optimizer': { | |||
| 'type': 'SGD', | |||
| 'lr': 0.01 | |||
| }, | |||
| 'lr_scheduler': { | |||
| 'type': 'StepLR', | |||
| 'step_size': 2 | |||
| }, | |||
| 'hooks': [{ | |||
| 'type': 'BestCkptSaverHook', | |||
| 'metric_key': MetricKeys.ACCURACY, | |||
| 'rule': 'min' | |||
| }, { | |||
| 'type': 'EvaluationHook', | |||
| 'interval': 1, | |||
| }] | |||
| }, | |||
| 'evaluation': { | |||
| 'dataloader': { | |||
| 'batch_size_per_gpu': 2, | |||
| 'workers_per_gpu': 1, | |||
| 'shuffle': False | |||
| }, | |||
| 'metrics': ['DummyMetric'] | |||
| } | |||
| } | |||
| config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) | |||
| with open(config_path, 'w') as f: | |||
| json.dump(json_cfg, f) | |||
| trainer_name = 'EpochBasedTrainer' | |||
| kwargs = dict( | |||
| cfg_file=config_path, | |||
| model=DummyModel(), | |||
| data_collator=None, | |||
| train_dataset=dummy_dataset, | |||
| eval_dataset=dummy_dataset, | |||
| max_epochs=3) | |||
| trainer = build_trainer(trainer_name, kwargs) | |||
| trainer.train() | |||
| results_files = os.listdir(self.tmp_dir) | |||
| self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files) | |||
| self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files) | |||
| self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files) | |||
| self.assertIn(f'best_{LogKeys.EPOCH}1_{MetricKeys.ACCURACY}0.1.pth', | |||
| results_files) | |||
| if __name__ == '__main__': | |||
| unittest.main() | |||
| @@ -15,21 +15,18 @@ from modelscope.utils.constant import LogKeys, ModelFile | |||
| from modelscope.utils.registry import default_group | |||
| from modelscope.utils.test_utils import create_dummy_test_dataset | |||
| _global_iter = 0 | |||
| def create_dummy_metric(): | |||
| @METRICS.register_module(group_key=default_group, module_name='DummyMetric') | |||
| class DummyMetric: | |||
| @METRICS.register_module( | |||
| group_key=default_group, module_name='DummyMetric', force=True) | |||
| class DummyMetric: | |||
| _fake_acc_by_epoch = {1: 0.1, 2: 0.5, 3: 0.2} | |||
| def add(*args, **kwargs): | |||
| pass | |||
| def add(*args, **kwargs): | |||
| pass | |||
| def evaluate(self): | |||
| global _global_iter | |||
| _global_iter += 1 | |||
| return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]} | |||
| def evaluate(self): | |||
| return {MetricKeys.ACCURACY: 0.5} | |||
| dummy_dataset = create_dummy_test_dataset( | |||
| @@ -58,80 +55,17 @@ class EvaluationHookTest(unittest.TestCase): | |||
| self.tmp_dir = tempfile.TemporaryDirectory().name | |||
| if not os.path.exists(self.tmp_dir): | |||
| os.makedirs(self.tmp_dir) | |||
| create_dummy_metric() | |||
| def tearDown(self): | |||
| super().tearDown() | |||
| shutil.rmtree(self.tmp_dir) | |||
| def test_best_ckpt_rule_max(self): | |||
| global _global_iter | |||
| _global_iter = 0 | |||
| json_cfg = { | |||
| 'task': 'image_classification', | |||
| 'train': { | |||
| 'work_dir': | |||
| self.tmp_dir, | |||
| 'dataloader': { | |||
| 'batch_size_per_gpu': 2, | |||
| 'workers_per_gpu': 1 | |||
| }, | |||
| 'optimizer': { | |||
| 'type': 'SGD', | |||
| 'lr': 0.01, | |||
| }, | |||
| 'lr_scheduler': { | |||
| 'type': 'StepLR', | |||
| 'step_size': 2, | |||
| }, | |||
| 'hooks': [{ | |||
| 'type': 'EvaluationHook', | |||
| 'interval': 1, | |||
| 'save_best_ckpt': True, | |||
| 'monitor_key': MetricKeys.ACCURACY | |||
| }] | |||
| }, | |||
| 'evaluation': { | |||
| 'dataloader': { | |||
| 'batch_size_per_gpu': 2, | |||
| 'workers_per_gpu': 1, | |||
| 'shuffle': False | |||
| }, | |||
| 'metrics': ['DummyMetric'] | |||
| } | |||
| } | |||
| config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) | |||
| with open(config_path, 'w') as f: | |||
| json.dump(json_cfg, f) | |||
| trainer_name = 'EpochBasedTrainer' | |||
| kwargs = dict( | |||
| cfg_file=config_path, | |||
| model=DummyModel(), | |||
| data_collator=None, | |||
| train_dataset=dummy_dataset, | |||
| eval_dataset=dummy_dataset, | |||
| max_epochs=3) | |||
| trainer = build_trainer(trainer_name, kwargs) | |||
| trainer.train() | |||
| results_files = os.listdir(self.tmp_dir) | |||
| self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files) | |||
| self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files) | |||
| self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files) | |||
| self.assertIn(f'best_{LogKeys.EPOCH}2_{MetricKeys.ACCURACY}0.5.pth', | |||
| results_files) | |||
| def test_best_ckpt_rule_min(self): | |||
| global _global_iter | |||
| _global_iter = 0 | |||
| def test_evaluation_hook(self): | |||
| json_cfg = { | |||
| 'task': 'image_classification', | |||
| 'train': { | |||
| 'work_dir': | |||
| self.tmp_dir, | |||
| 'work_dir': self.tmp_dir, | |||
| 'dataloader': { | |||
| 'batch_size_per_gpu': 2, | |||
| 'workers_per_gpu': 1 | |||
| @@ -147,10 +81,6 @@ class EvaluationHookTest(unittest.TestCase): | |||
| 'hooks': [{ | |||
| 'type': 'EvaluationHook', | |||
| 'interval': 1, | |||
| 'save_best_ckpt': True, | |||
| 'monitor_key': 'accuracy', | |||
| 'rule': 'min', | |||
| 'out_dir': os.path.join(self.tmp_dir, 'best_ckpt') | |||
| }] | |||
| }, | |||
| 'evaluation': { | |||
| @@ -174,16 +104,11 @@ class EvaluationHookTest(unittest.TestCase): | |||
| data_collator=None, | |||
| train_dataset=dummy_dataset, | |||
| eval_dataset=dummy_dataset, | |||
| max_epochs=3) | |||
| max_epochs=1) | |||
| trainer = build_trainer(trainer_name, kwargs) | |||
| trainer.train() | |||
| results_files = os.listdir(self.tmp_dir) | |||
| self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files) | |||
| self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files) | |||
| self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files) | |||
| self.assertIn(f'best_{LogKeys.EPOCH}1_{MetricKeys.ACCURACY}0.1.pth', | |||
| os.listdir(os.path.join(self.tmp_dir, 'best_ckpt'))) | |||
| self.assertDictEqual(trainer.metric_values, {'accuracy': 0.5}) | |||
| if __name__ == '__main__': | |||
| @@ -9,16 +9,36 @@ import numpy as np | |||
| import torch | |||
| from torch import nn | |||
| from torch.optim import SGD | |||
| from torch.optim.lr_scheduler import MultiStepLR | |||
| from torch.optim.lr_scheduler import MultiStepLR, ReduceLROnPlateau | |||
| from modelscope.metrics.builder import METRICS, MetricKeys | |||
| from modelscope.trainers import build_trainer | |||
| from modelscope.utils.constant import LogKeys, ModelFile, TrainerStages | |||
| from modelscope.utils.registry import default_group | |||
| from modelscope.utils.test_utils import create_dummy_test_dataset | |||
| dummy_dataset = create_dummy_test_dataset( | |||
| np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 10) | |||
| def create_dummy_metric(): | |||
| _global_iter = 0 | |||
| @METRICS.register_module( | |||
| group_key=default_group, module_name='DummyMetric', force=True) | |||
| class DummyMetric: | |||
| _fake_acc_by_epoch = {1: 0.1, 2: 0.1, 3: 0.1, 4: 0.1, 5: 0.3} | |||
| def add(*args, **kwargs): | |||
| pass | |||
| def evaluate(self): | |||
| global _global_iter | |||
| _global_iter += 1 | |||
| return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]} | |||
| class DummyModel(nn.Module): | |||
| def __init__(self): | |||
| @@ -41,12 +61,16 @@ class LrSchedulerHookTest(unittest.TestCase): | |||
| self.tmp_dir = tempfile.TemporaryDirectory().name | |||
| if not os.path.exists(self.tmp_dir): | |||
| os.makedirs(self.tmp_dir) | |||
| create_dummy_metric() | |||
| def tearDown(self): | |||
| super().tearDown() | |||
| shutil.rmtree(self.tmp_dir) | |||
| def test_lr_scheduler_hook(self): | |||
| global _global_iter | |||
| _global_iter = 0 | |||
| json_cfg = { | |||
| 'task': 'image_classification', | |||
| 'train': { | |||
| @@ -85,25 +109,26 @@ class LrSchedulerHookTest(unittest.TestCase): | |||
| trainer.invoke_hook(TrainerStages.before_train_epoch) | |||
| for _, data_batch in enumerate(train_dataloader): | |||
| trainer.invoke_hook(TrainerStages.before_train_iter) | |||
| trainer.train_step(trainer.model, data_batch) | |||
| trainer.invoke_hook(TrainerStages.after_train_iter) | |||
| log_lrs.append(trainer.log_buffer.output[LogKeys.LR]) | |||
| optim_lrs.append(optimizer.param_groups[0]['lr']) | |||
| trainer.train_step(trainer.model, data_batch) | |||
| trainer.invoke_hook(TrainerStages.after_train_iter) | |||
| trainer.invoke_hook(TrainerStages.after_train_epoch) | |||
| trainer._epoch += 1 | |||
| trainer.invoke_hook(TrainerStages.after_run) | |||
| iters = 5 | |||
| target_lrs = [0.01] * iters * 1 + [0.001] * iters * 2 + [0.0001 | |||
| ] * iters * 2 | |||
| target_lrs = [0.01] * iters * 2 + [0.001] * iters * 2 + [0.0001 | |||
| ] * iters * 1 | |||
| self.assertListEqual(log_lrs, target_lrs) | |||
| self.assertListEqual(optim_lrs, target_lrs) | |||
| def test_warmup_lr_scheduler_hook(self): | |||
| global _global_iter | |||
| _global_iter = 0 | |||
| json_cfg = { | |||
| 'task': 'image_classification', | |||
| 'train': { | |||
| @@ -156,22 +181,118 @@ class LrSchedulerHookTest(unittest.TestCase): | |||
| trainer.invoke_hook(TrainerStages.before_train_epoch) | |||
| for _, data_batch in enumerate(train_dataloader): | |||
| trainer.invoke_hook(TrainerStages.before_train_iter) | |||
| trainer.train_step(trainer.model, data_batch) | |||
| trainer.invoke_hook(TrainerStages.after_train_iter) | |||
| log_lrs.append(round(trainer.log_buffer.output[LogKeys.LR], 5)) | |||
| optim_lrs.append( | |||
| round(trainer.optimizer.param_groups[0]['lr'], 5)) | |||
| trainer.invoke_hook(TrainerStages.after_train_epoch) | |||
| trainer.invoke_hook(TrainerStages.after_run) | |||
| iters = 5 | |||
| target_lrs = [0.001] * iters * 1 + [0.004] * iters * 1 + [ | |||
| 0.007 | |||
| ] * iters * 1 + [0.01] * iters * 1 + [0.001] * iters * 2 + [ | |||
| 0.0001 | |||
| ] * iters * 1 | |||
| self.assertListEqual(log_lrs, target_lrs) | |||
| self.assertListEqual(optim_lrs, target_lrs) | |||
| class PlateauLrSchedulerHookTest(unittest.TestCase): | |||
| def setUp(self): | |||
| print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) | |||
| self.tmp_dir = tempfile.TemporaryDirectory().name | |||
| if not os.path.exists(self.tmp_dir): | |||
| os.makedirs(self.tmp_dir) | |||
| create_dummy_metric() | |||
| def tearDown(self): | |||
| super().tearDown() | |||
| shutil.rmtree(self.tmp_dir) | |||
| def test_plateau_lr_scheduler_hook(self): | |||
| global _global_iter | |||
| _global_iter = 0 | |||
| json_cfg = { | |||
| 'task': 'image_classification', | |||
| 'train': { | |||
| 'work_dir': self.tmp_dir, | |||
| 'dataloader': { | |||
| 'batch_size_per_gpu': 2, | |||
| 'workers_per_gpu': 1 | |||
| }, | |||
| 'lr_scheduler': { | |||
| 'type': 'ReduceLROnPlateau', | |||
| 'mode': 'max', | |||
| 'factor': 0.1, | |||
| 'patience': 2, | |||
| }, | |||
| 'lr_scheduler_hook': { | |||
| 'type': 'PlateauLrSchedulerHook', | |||
| 'metric_key': MetricKeys.ACCURACY | |||
| }, | |||
| 'hooks': [{ | |||
| 'type': 'EvaluationHook', | |||
| 'interval': 1 | |||
| }] | |||
| }, | |||
| 'evaluation': { | |||
| 'dataloader': { | |||
| 'batch_size_per_gpu': 2, | |||
| 'workers_per_gpu': 1, | |||
| 'shuffle': False | |||
| }, | |||
| 'metrics': ['DummyMetric'] | |||
| } | |||
| } | |||
| config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) | |||
| with open(config_path, 'w') as f: | |||
| json.dump(json_cfg, f) | |||
| model = DummyModel() | |||
| optimizer = SGD(model.parameters(), lr=0.01) | |||
| trainer_name = 'EpochBasedTrainer' | |||
| kwargs = dict( | |||
| cfg_file=config_path, | |||
| model=model, | |||
| train_dataset=dummy_dataset, | |||
| eval_dataset=dummy_dataset, | |||
| optimizers=(optimizer, None), | |||
| max_epochs=5) | |||
| trainer = build_trainer(trainer_name, kwargs) | |||
| train_dataloader = trainer._build_dataloader_with_dataset( | |||
| trainer.train_dataset, **trainer.cfg.train.get('dataloader', {})) | |||
| trainer.data_loader = train_dataloader | |||
| trainer.register_optimizers_hook() | |||
| trainer.register_hook_from_cfg(trainer.cfg.train.hooks) | |||
| trainer.invoke_hook(TrainerStages.before_run) | |||
| log_lrs = [] | |||
| optim_lrs = [] | |||
| for _ in range(trainer._epoch, trainer._max_epochs): | |||
| trainer.invoke_hook(TrainerStages.before_train_epoch) | |||
| for _, data_batch in enumerate(train_dataloader): | |||
| trainer.invoke_hook(TrainerStages.before_train_iter) | |||
| trainer.train_step(trainer.model, data_batch) | |||
| trainer.invoke_hook(TrainerStages.after_train_iter) | |||
| log_lrs.append(trainer.log_buffer.output[LogKeys.LR]) | |||
| optim_lrs.append(optimizer.param_groups[0]['lr']) | |||
| trainer.invoke_hook(TrainerStages.after_train_epoch) | |||
| trainer._epoch += 1 | |||
| trainer.invoke_hook(TrainerStages.after_run) | |||
| iters = 5 | |||
| target_lrs = [0.004] * iters * 1 + [0.007] * iters * 1 + [ | |||
| 0.01 | |||
| ] * iters * 1 + [0.001] * iters * 2 + [0.0001] * iters * 2 | |||
| target_lrs = [0.01] * iters * 4 + [0.001] * iters * 1 | |||
| self.assertListEqual(log_lrs, target_lrs) | |||
| self.assertListEqual(optim_lrs, target_lrs) | |||
| @@ -19,13 +19,6 @@ from modelscope.trainers import build_trainer | |||
| from modelscope.utils.constant import LogKeys, ModeKeys, ModelFile | |||
| from modelscope.utils.test_utils import create_dummy_test_dataset, test_level | |||
| class DummyMetric: | |||
| def __call__(self, ground_truth, predict_results): | |||
| return {'accuracy': 0.5} | |||
| dummy_dataset_small = create_dummy_test_dataset( | |||
| np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20) | |||
| @@ -265,14 +258,14 @@ class TrainerTest(unittest.TestCase): | |||
| LogKeys.MODE: ModeKeys.TRAIN, | |||
| LogKeys.EPOCH: 2, | |||
| LogKeys.ITER: 10, | |||
| LogKeys.LR: 0.001 | |||
| LogKeys.LR: 0.01 | |||
| }, json.loads(lines[3])) | |||
| self.assertDictContainsSubset( | |||
| { | |||
| LogKeys.MODE: ModeKeys.TRAIN, | |||
| LogKeys.EPOCH: 2, | |||
| LogKeys.ITER: 20, | |||
| LogKeys.LR: 0.001 | |||
| LogKeys.LR: 0.01 | |||
| }, json.loads(lines[4])) | |||
| self.assertDictContainsSubset( | |||
| { | |||
| @@ -18,13 +18,6 @@ from modelscope.utils.constant import LogKeys, ModeKeys, ModelFile | |||
| from modelscope.utils.test_utils import (DistributedTestCase, | |||
| create_dummy_test_dataset, test_level) | |||
| class DummyMetric: | |||
| def __call__(self, ground_truth, predict_results): | |||
| return {'accuracy': 0.5} | |||
| dummy_dataset_small = create_dummy_test_dataset( | |||
| np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20) | |||
| @@ -141,14 +134,14 @@ class TrainerTestSingleGpu(unittest.TestCase): | |||
| LogKeys.MODE: ModeKeys.TRAIN, | |||
| LogKeys.EPOCH: 2, | |||
| LogKeys.ITER: 10, | |||
| LogKeys.LR: 0.001 | |||
| LogKeys.LR: 0.01 | |||
| }, json.loads(lines[3])) | |||
| self.assertDictContainsSubset( | |||
| { | |||
| LogKeys.MODE: ModeKeys.TRAIN, | |||
| LogKeys.EPOCH: 2, | |||
| LogKeys.ITER: 20, | |||
| LogKeys.LR: 0.001 | |||
| LogKeys.LR: 0.01 | |||
| }, json.loads(lines[4])) | |||
| self.assertDictContainsSubset( | |||
| { | |||
| @@ -229,7 +222,7 @@ class TrainerTestMultiGpus(DistributedTestCase): | |||
| LogKeys.MODE: ModeKeys.TRAIN, | |||
| LogKeys.EPOCH: 2, | |||
| LogKeys.ITER: 10, | |||
| LogKeys.LR: 0.001 | |||
| LogKeys.LR: 0.01 | |||
| }, json.loads(lines[2])) | |||
| self.assertDictContainsSubset( | |||
| { | |||