| @@ -1,4 +1,4 @@ | |||
| from .sentence_similarity_model import * # noqa F403 | |||
| from .sequence_classification_model import * # noqa F403 | |||
| from .text_generation_model import * # noqa F403 | |||
| from .zero_shot_classification_model import * | |||
| from .zero_shot_classification_model import * # noqa F403 | |||
| @@ -1,6 +1,7 @@ | |||
| from typing import Any, Dict | |||
| import torch | |||
| import numpy as np | |||
| import torch | |||
| from modelscope.utils.constant import Tasks | |||
| from ..base import Model | |||
| @@ -10,7 +11,8 @@ __all__ = ['BertForZeroShotClassification'] | |||
| @MODELS.register_module( | |||
| Tasks.zero_shot_classification, module_name=r'bert-zero-shot-classification') | |||
| Tasks.zero_shot_classification, | |||
| module_name=r'bert-zero-shot-classification') | |||
| class BertForZeroShotClassification(Model): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| @@ -40,6 +42,6 @@ class BertForZeroShotClassification(Model): | |||
| """ | |||
| with torch.no_grad(): | |||
| outputs = self.model(**input) | |||
| logits = outputs["logits"].numpy() | |||
| logits = outputs['logits'].numpy() | |||
| res = {'logits': logits} | |||
| return res | |||
| @@ -20,7 +20,8 @@ DEFAULT_MODEL_FOR_PIPELINE = { | |||
| Tasks.text_classification: | |||
| ('bert-sentiment-analysis', 'damo/bert-base-sst2'), | |||
| Tasks.zero_shot_classification: | |||
| ('bert-zero-shot-classification', 'damo/nlp_structbert_zero-shot-classification_chinese-base'), | |||
| ('bert-zero-shot-classification', | |||
| 'damo/nlp_structbert_zero-shot-classification_chinese-base'), | |||
| Tasks.text_generation: ('palm', 'damo/nlp_palm_text-generation_chinese'), | |||
| Tasks.image_captioning: ('ofa', None), | |||
| Tasks.image_generation: | |||
| @@ -1,4 +1,4 @@ | |||
| from .sentence_similarity_pipeline import * # noqa F403 | |||
| from .sequence_classification_pipeline import * # noqa F403 | |||
| from .text_generation_pipeline import * # noqa F403 | |||
| from .zero_shot_classification_pipeline import * | |||
| from .zero_shot_classification_pipeline import * # noqa F403 | |||
| @@ -4,6 +4,7 @@ from typing import Any, Dict, Union | |||
| import json | |||
| import numpy as np | |||
| from scipy.special import softmax | |||
| from modelscope.models.nlp import BertForZeroShotClassification | |||
| from modelscope.preprocessors import ZeroShotClassificationPreprocessor | |||
| @@ -11,7 +12,6 @@ from modelscope.utils.constant import Tasks | |||
| from ...models import Model | |||
| from ..base import Input, Pipeline | |||
| from ..builder import PIPELINES | |||
| from scipy.special import softmax | |||
| __all__ = ['ZeroShotClassificationPipeline'] | |||
| @@ -39,16 +39,15 @@ class ZeroShotClassificationPipeline(Pipeline): | |||
| self.entailment_id = 0 | |||
| self.contradiction_id = 2 | |||
| self.candidate_labels = kwargs.pop("candidate_labels") | |||
| self.hypothesis_template = kwargs.pop('hypothesis_template', "{}") | |||
| self.candidate_labels = kwargs.pop('candidate_labels') | |||
| self.hypothesis_template = kwargs.pop('hypothesis_template', '{}') | |||
| self.multi_label = kwargs.pop('multi_label', False) | |||
| if preprocessor is None: | |||
| preprocessor = ZeroShotClassificationPreprocessor( | |||
| sc_model.model_dir, | |||
| candidate_labels=self.candidate_labels, | |||
| hypothesis_template=self.hypothesis_template | |||
| ) | |||
| hypothesis_template=self.hypothesis_template) | |||
| super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | |||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
| @@ -72,7 +71,7 @@ class ZeroShotClassificationPipeline(Pipeline): | |||
| reversed_index = list(reversed(scores.argsort())) | |||
| result = { | |||
| "labels": [self.candidate_labels[i] for i in reversed_index], | |||
| "scores": [scores[i].item() for i in reversed_index], | |||
| 'labels': [self.candidate_labels[i] for i in reversed_index], | |||
| 'scores': [scores[i].item() for i in reversed_index], | |||
| } | |||
| return result | |||
| @@ -12,8 +12,7 @@ from .builder import PREPROCESSORS | |||
| __all__ = [ | |||
| 'Tokenize', 'SequenceClassificationPreprocessor', | |||
| 'TextGenerationPreprocessor', | |||
| "ZeroShotClassificationPreprocessor" | |||
| 'TextGenerationPreprocessor', 'ZeroShotClassificationPreprocessor' | |||
| ] | |||
| @@ -190,8 +189,8 @@ class ZeroShotClassificationPreprocessor(Preprocessor): | |||
| from sofa import SbertTokenizer | |||
| self.model_dir: str = model_dir | |||
| self.sequence_length = kwargs.pop('sequence_length', 512) | |||
| self.candidate_labels = kwargs.pop("candidate_labels") | |||
| self.hypothesis_template = kwargs.pop('hypothesis_template', "{}") | |||
| self.candidate_labels = kwargs.pop('candidate_labels') | |||
| self.hypothesis_template = kwargs.pop('hypothesis_template', '{}') | |||
| self.tokenizer = SbertTokenizer.from_pretrained(self.model_dir) | |||
| @type_assert(object, str) | |||
| @@ -206,7 +205,8 @@ class ZeroShotClassificationPreprocessor(Preprocessor): | |||
| Returns: | |||
| Dict[str, Any]: the preprocessed data | |||
| """ | |||
| pairs = [[data, self.hypothesis_template.format(label)] for label in self.candidate_labels] | |||
| pairs = [[data, self.hypothesis_template.format(label)] | |||
| for label in self.candidate_labels] | |||
| features = self.tokenizer( | |||
| pairs, | |||
| @@ -214,7 +214,5 @@ class ZeroShotClassificationPreprocessor(Preprocessor): | |||
| truncation=True, | |||
| max_length=self.sequence_length, | |||
| return_tensors='pt', | |||
| truncation_strategy='only_first' | |||
| ) | |||
| truncation_strategy='only_first') | |||
| return features | |||
| @@ -13,13 +13,13 @@ from modelscope.utils.constant import Tasks | |||
| class ZeroShotClassificationTest(unittest.TestCase): | |||
| model_id = 'damo/nlp_structbert_zero-shot-classification_chinese-base' | |||
| sentence = '全新突破 解放军运20版空中加油机曝光' | |||
| candidate_labels = ["文化", "体育", "娱乐", "财经", "家居", "汽车", "教育", "科技", "军事"] | |||
| candidate_labels = ['文化', '体育', '娱乐', '财经', '家居', '汽车', '教育', '科技', '军事'] | |||
| def test_run_from_local(self): | |||
| cache_path = snapshot_download(self.model_id) | |||
| tokenizer = ZeroShotClassificationPreprocessor(cache_path, candidate_labels=self.candidate_labels) | |||
| model = BertForZeroShotClassification( | |||
| cache_path, tokenizer=tokenizer) | |||
| tokenizer = ZeroShotClassificationPreprocessor( | |||
| cache_path, candidate_labels=self.candidate_labels) | |||
| model = BertForZeroShotClassification(cache_path, tokenizer=tokenizer) | |||
| pipeline1 = ZeroShotClassificationPipeline( | |||
| model, | |||
| preprocessor=tokenizer, | |||
| @@ -29,8 +29,7 @@ class ZeroShotClassificationTest(unittest.TestCase): | |||
| Tasks.zero_shot_classification, | |||
| model=model, | |||
| preprocessor=tokenizer, | |||
| candidate_labels=self.candidate_labels | |||
| ) | |||
| candidate_labels=self.candidate_labels) | |||
| print(f'sentence: {self.sentence}\n' | |||
| f'pipeline1:{pipeline1(input=self.sentence)}') | |||
| @@ -40,21 +39,20 @@ class ZeroShotClassificationTest(unittest.TestCase): | |||
| def test_run_with_model_from_modelhub(self): | |||
| model = Model.from_pretrained(self.model_id) | |||
| tokenizer = ZeroShotClassificationPreprocessor(model.model_dir, candidate_labels=self.candidate_labels) | |||
| tokenizer = ZeroShotClassificationPreprocessor( | |||
| model.model_dir, candidate_labels=self.candidate_labels) | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.zero_shot_classification, | |||
| model=model, | |||
| preprocessor=tokenizer, | |||
| candidate_labels=self.candidate_labels | |||
| ) | |||
| candidate_labels=self.candidate_labels) | |||
| print(pipeline_ins(input=self.sentence)) | |||
| def test_run_with_model_name(self): | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.zero_shot_classification, | |||
| model=self.model_id, | |||
| candidate_labels=self.candidate_labels | |||
| ) | |||
| candidate_labels=self.candidate_labels) | |||
| print(pipeline_ins(input=self.sentence)) | |||
| def test_run_with_default_model(self): | |||