| @@ -48,7 +48,6 @@ class Pipelines(object): | |||
| text_generation = 'text-generation' | |||
| sentiment_analysis = 'sentiment-analysis' | |||
| sentiment_classification = 'sentiment-classification' | |||
| zero_shot_classification = 'zero-shot-classification' | |||
| fill_mask = 'fill-mask' | |||
| nli = 'nli' | |||
| dialog_intent_prediction = 'dialog-intent-prediction' | |||
| @@ -95,7 +94,6 @@ class Preprocessors(object): | |||
| token_cls_tokenizer = 'token-cls-tokenizer' | |||
| nli_tokenizer = 'nli-tokenizer' | |||
| sen_cls_tokenizer = 'sen-cls-tokenizer' | |||
| zero_shot_cls_tokenizer = 'zero-shot-cls-tokenizer' | |||
| # audio preprocessor | |||
| linear_aec_fbank = 'linear-aec-fbank' | |||
| @@ -7,5 +7,5 @@ from .builder import MODELS, build_model | |||
| from .multi_model import OfaForImageCaptioning | |||
| from .nlp import (BertForSequenceClassification, SbertForNLI, | |||
| SbertForSentenceSimilarity, SbertForSentimentClassification, | |||
| SbertForTokenClassification, SbertForZeroShotClassification, | |||
| StructBertForMaskedLM, VecoForMaskedLM) | |||
| SbertForTokenClassification, StructBertForMaskedLM, | |||
| VecoForMaskedLM) | |||
| @@ -5,6 +5,5 @@ from .sbert_for_nli import * # noqa F403 | |||
| from .sbert_for_sentence_similarity import * # noqa F403 | |||
| from .sbert_for_sentiment_classification import * # noqa F403 | |||
| from .sbert_for_token_classification import * # noqa F403 | |||
| from .sbert_for_zero_shot_classification import * # noqa F403 | |||
| from .space.dialog_intent_prediction_model import * # noqa F403 | |||
| from .space.dialog_modeling_model import * # noqa F403 | |||
| @@ -1,50 +0,0 @@ | |||
| from typing import Any, Dict | |||
| import numpy as np | |||
| from modelscope.utils.constant import Tasks | |||
| from ...metainfo import Models | |||
| from ..base import Model | |||
| from ..builder import MODELS | |||
| __all__ = ['SbertForZeroShotClassification'] | |||
| @MODELS.register_module( | |||
| Tasks.zero_shot_classification, module_name=Models.structbert) | |||
| class SbertForZeroShotClassification(Model): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| """initialize the zero shot classification model from the `model_dir` path. | |||
| Args: | |||
| model_dir (str): the model path. | |||
| """ | |||
| super().__init__(model_dir, *args, **kwargs) | |||
| from sofa import SbertForSequenceClassification | |||
| self.model = SbertForSequenceClassification.from_pretrained(model_dir) | |||
| def train(self): | |||
| return self.model.train() | |||
| def eval(self): | |||
| return self.model.eval() | |||
| def forward(self, input: Dict[str, Any]) -> Dict[str, np.ndarray]: | |||
| """return the result by the model | |||
| Args: | |||
| input (Dict[str, Any]): the preprocessed data | |||
| Returns: | |||
| Dict[str, np.ndarray]: results | |||
| Example: | |||
| { | |||
| 'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value | |||
| } | |||
| """ | |||
| outputs = self.model(**input) | |||
| logits = outputs['logits'].numpy() | |||
| res = {'logits': logits} | |||
| return res | |||
| @@ -31,9 +31,6 @@ DEFAULT_MODEL_FOR_PIPELINE = { | |||
| 'damo/nlp_structbert_sentiment-classification_chinese-base'), | |||
| Tasks.text_classification: ('bert-sentiment-analysis', | |||
| 'damo/bert-base-sst2'), | |||
| Tasks.zero_shot_classification: | |||
| (Pipelines.zero_shot_classification, | |||
| 'damo/nlp_structbert_zero-shot-classification_chinese-base'), | |||
| Tasks.image_matting: (Pipelines.image_matting, | |||
| 'damo/cv_unet_image-matting'), | |||
| Tasks.text_classification: (Pipelines.sentiment_analysis, | |||
| @@ -7,4 +7,3 @@ from .sentiment_classification_pipeline import * # noqa F403 | |||
| from .sequence_classification_pipeline import * # noqa F403 | |||
| from .text_generation_pipeline import * # noqa F403 | |||
| from .word_segmentation_pipeline import * # noqa F403 | |||
| from .zero_shot_classification_pipeline import * # noqa F403 | |||
| @@ -1,98 +0,0 @@ | |||
| import os | |||
| import uuid | |||
| from typing import Any, Dict, Union | |||
| import json | |||
| import numpy as np | |||
| import torch | |||
| from scipy.special import softmax | |||
| from ...metainfo import Pipelines | |||
| from ...models import Model | |||
| from ...models.nlp import SbertForZeroShotClassification | |||
| from ...preprocessors import ZeroShotClassificationPreprocessor | |||
| from ...utils.constant import Tasks | |||
| from ..base import Input, Pipeline | |||
| from ..builder import PIPELINES | |||
| __all__ = ['ZeroShotClassificationPipeline'] | |||
| @PIPELINES.register_module( | |||
| Tasks.zero_shot_classification, | |||
| module_name=Pipelines.zero_shot_classification) | |||
| class ZeroShotClassificationPipeline(Pipeline): | |||
| def __init__(self, | |||
| model: Union[SbertForZeroShotClassification, str], | |||
| preprocessor: ZeroShotClassificationPreprocessor = None, | |||
| **kwargs): | |||
| """use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | |||
| Args: | |||
| model (SbertForSentimentClassification): a model instance | |||
| preprocessor (SentimentClassificationPreprocessor): a preprocessor instance | |||
| """ | |||
| assert isinstance(model, str) or isinstance(model, SbertForZeroShotClassification), \ | |||
| 'model must be a single str or SbertForZeroShotClassification' | |||
| sc_model = model if isinstance( | |||
| model, | |||
| SbertForZeroShotClassification) else Model.from_pretrained(model) | |||
| self.entailment_id = 0 | |||
| self.contradiction_id = 2 | |||
| if preprocessor is None: | |||
| preprocessor = ZeroShotClassificationPreprocessor( | |||
| sc_model.model_dir) | |||
| sc_model.eval() | |||
| super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | |||
| def _sanitize_parameters(self, **kwargs): | |||
| preprocess_params = {} | |||
| postprocess_params = {} | |||
| if 'candidate_labels' in kwargs: | |||
| candidate_labels = kwargs.pop('candidate_labels') | |||
| preprocess_params['candidate_labels'] = candidate_labels | |||
| postprocess_params['candidate_labels'] = candidate_labels | |||
| else: | |||
| raise ValueError('You must include at least one label.') | |||
| preprocess_params['hypothesis_template'] = kwargs.pop( | |||
| 'hypothesis_template', '{}') | |||
| postprocess_params['multi_label'] = kwargs.pop('multi_label', False) | |||
| return preprocess_params, {}, postprocess_params | |||
| def forward(self, inputs: Dict[str, Any], | |||
| **forward_params) -> Dict[str, Any]: | |||
| with torch.no_grad(): | |||
| return super().forward(inputs, **forward_params) | |||
| def postprocess(self, | |||
| inputs: Dict[str, Any], | |||
| candidate_labels, | |||
| multi_label=False) -> Dict[str, Any]: | |||
| """process the prediction results | |||
| Args: | |||
| inputs (Dict[str, Any]): _description_ | |||
| Returns: | |||
| Dict[str, Any]: the prediction results | |||
| """ | |||
| logits = inputs['logits'] | |||
| if multi_label or len(candidate_labels) == 1: | |||
| logits = logits[..., [self.contradiction_id, self.entailment_id]] | |||
| scores = softmax(logits, axis=-1)[..., 1] | |||
| else: | |||
| logits = logits[..., self.entailment_id] | |||
| scores = softmax(logits, axis=-1) | |||
| reversed_index = list(reversed(scores.argsort())) | |||
| result = { | |||
| 'labels': [candidate_labels[i] for i in reversed_index], | |||
| 'scores': [scores[i].item() for i in reversed_index], | |||
| } | |||
| return result | |||
| @@ -13,9 +13,9 @@ from .builder import PREPROCESSORS | |||
| __all__ = [ | |||
| 'Tokenize', 'SequenceClassificationPreprocessor', | |||
| 'TextGenerationPreprocessor', 'ZeroShotClassificationPreprocessor', | |||
| 'TokenClassifcationPreprocessor', 'NLIPreprocessor', | |||
| 'SentimentClassificationPreprocessor', 'FillMaskPreprocessor' | |||
| 'TextGenerationPreprocessor', 'TokenClassifcationPreprocessor', | |||
| 'NLIPreprocessor', 'SentimentClassificationPreprocessor', | |||
| 'FillMaskPreprocessor' | |||
| ] | |||
| @@ -372,50 +372,6 @@ class FillMaskPreprocessor(Preprocessor): | |||
| return {k: torch.tensor(v) for k, v in rst.items()} | |||
| @PREPROCESSORS.register_module( | |||
| Fields.nlp, module_name=Preprocessors.zero_shot_cls_tokenizer) | |||
| class ZeroShotClassificationPreprocessor(Preprocessor): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| """preprocess the data via the vocab.txt from the `model_dir` path | |||
| Args: | |||
| model_dir (str): model path | |||
| """ | |||
| super().__init__(*args, **kwargs) | |||
| from sofa import SbertTokenizer | |||
| self.model_dir: str = model_dir | |||
| self.sequence_length = kwargs.pop('sequence_length', 512) | |||
| self.tokenizer = SbertTokenizer.from_pretrained(self.model_dir) | |||
| @type_assert(object, str) | |||
| def __call__(self, data: str, hypothesis_template: str, | |||
| candidate_labels: list) -> Dict[str, Any]: | |||
| """process the raw input data | |||
| Args: | |||
| data (str): a sentence | |||
| Example: | |||
| 'you are so handsome.' | |||
| Returns: | |||
| Dict[str, Any]: the preprocessed data | |||
| """ | |||
| pairs = [[data, hypothesis_template.format(label)] | |||
| for label in candidate_labels] | |||
| features = self.tokenizer( | |||
| pairs, | |||
| padding=True, | |||
| truncation=True, | |||
| max_length=self.sequence_length, | |||
| return_tensors='pt', | |||
| truncation_strategy='only_first') | |||
| return features | |||
| @PREPROCESSORS.register_module( | |||
| Fields.nlp, module_name=Preprocessors.token_cls_tokenizer) | |||
| class TokenClassifcationPreprocessor(Preprocessor): | |||
| @@ -32,7 +32,6 @@ class Tasks(object): | |||
| action_recognition = 'action-recognition' | |||
| # nlp tasks | |||
| zero_shot_classification = 'zero-shot-classification' | |||
| word_segmentation = 'word-segmentation' | |||
| nli = 'nli' | |||
| sentiment_classification = 'sentiment-classification' | |||
| @@ -1,64 +0,0 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| import unittest | |||
| from modelscope.hub.snapshot_download import snapshot_download | |||
| from modelscope.models import Model | |||
| from modelscope.models.nlp import SbertForZeroShotClassification | |||
| from modelscope.pipelines import ZeroShotClassificationPipeline, pipeline | |||
| from modelscope.preprocessors import ZeroShotClassificationPreprocessor | |||
| from modelscope.utils.constant import Tasks | |||
| from modelscope.utils.test_utils import test_level | |||
| class ZeroShotClassificationTest(unittest.TestCase): | |||
| model_id = 'damo/nlp_structbert_zero-shot-classification_chinese-base' | |||
| sentence = '全新突破 解放军运20版空中加油机曝光' | |||
| labels = ['文化', '体育', '娱乐', '财经', '家居', '汽车', '教育', '科技', '军事'] | |||
| template = '这篇文章的标题是{}' | |||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
| def test_run_with_direct_file_download(self): | |||
| cache_path = snapshot_download(self.model_id) | |||
| tokenizer = ZeroShotClassificationPreprocessor(cache_path) | |||
| model = SbertForZeroShotClassification(cache_path, tokenizer=tokenizer) | |||
| pipeline1 = ZeroShotClassificationPipeline( | |||
| model, preprocessor=tokenizer) | |||
| pipeline2 = pipeline( | |||
| Tasks.zero_shot_classification, | |||
| model=model, | |||
| preprocessor=tokenizer) | |||
| print( | |||
| f'sentence: {self.sentence}\n' | |||
| f'pipeline1:{pipeline1(input=self.sentence,candidate_labels=self.labels)}' | |||
| ) | |||
| print() | |||
| print( | |||
| f'sentence: {self.sentence}\n' | |||
| f'pipeline2: {pipeline2(self.sentence,candidate_labels=self.labels,hypothesis_template=self.template)}' | |||
| ) | |||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
| def test_run_with_model_from_modelhub(self): | |||
| model = Model.from_pretrained(self.model_id) | |||
| tokenizer = ZeroShotClassificationPreprocessor(model.model_dir) | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.zero_shot_classification, | |||
| model=model, | |||
| preprocessor=tokenizer) | |||
| print(pipeline_ins(input=self.sentence, candidate_labels=self.labels)) | |||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
| def test_run_with_model_name(self): | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.zero_shot_classification, model=self.model_id) | |||
| print(pipeline_ins(input=self.sentence, candidate_labels=self.labels)) | |||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
| def test_run_with_default_model(self): | |||
| pipeline_ins = pipeline(task=Tasks.zero_shot_classification) | |||
| print(pipeline_ins(input=self.sentence, candidate_labels=self.labels)) | |||
| if __name__ == '__main__': | |||
| unittest.main() | |||