Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9662406 * bug fix for nlp backbone-head trainersmaster
| @@ -3,7 +3,8 @@ import unittest | |||
| from modelscope.hub.snapshot_download import snapshot_download | |||
| from modelscope.models import Model | |||
| from modelscope.models.nlp import SbertForSequenceClassification | |||
| from modelscope.models.nlp.task_models.sequence_classification import \ | |||
| SequenceClassificationModel | |||
| from modelscope.pipelines import pipeline | |||
| from modelscope.pipelines.nlp import SingleSentenceClassificationPipeline | |||
| from modelscope.preprocessors import SingleSentenceClassificationPreprocessor | |||
| @@ -11,15 +12,15 @@ from modelscope.utils.constant import Tasks | |||
| from modelscope.utils.test_utils import test_level | |||
| class SentimentClassificationTest(unittest.TestCase): | |||
| model_id = 'damo/nlp_structbert_sentiment-classification_chinese-tiny' | |||
| class SentimentClassificationTaskModelTest(unittest.TestCase): | |||
| model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base' | |||
| sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音' | |||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
| def test_run_with_direct_file_download(self): | |||
| cache_path = snapshot_download(self.model_id) | |||
| tokenizer = SingleSentenceClassificationPreprocessor(cache_path) | |||
| model = SbertForSequenceClassification.from_pretrained( | |||
| model = SequenceClassificationModel.from_pretrained( | |||
| self.model_id, num_labels=2) | |||
| pipeline1 = SingleSentenceClassificationPipeline( | |||
| model, preprocessor=tokenizer) | |||
| @@ -32,10 +33,6 @@ class SentimentClassificationTest(unittest.TestCase): | |||
| print() | |||
| print(f'sentence1: {self.sentence1}\n' | |||
| f'pipeline1: {pipeline2(input=self.sentence1)}') | |||
| self.assertTrue( | |||
| isinstance(pipeline1.model, SbertForSequenceClassification)) | |||
| self.assertTrue( | |||
| isinstance(pipeline2.model, SbertForSequenceClassification)) | |||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
| def test_run_with_model_from_modelhub(self): | |||
| @@ -47,23 +44,22 @@ class SentimentClassificationTest(unittest.TestCase): | |||
| preprocessor=tokenizer) | |||
| print(pipeline_ins(input=self.sentence1)) | |||
| self.assertTrue( | |||
| isinstance(pipeline_ins.model, SbertForSequenceClassification)) | |||
| isinstance(pipeline_ins.model, SequenceClassificationModel)) | |||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
| def test_run_with_model_name(self): | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.sentiment_classification, model=self.model_id) | |||
| print(pipeline_ins(input=self.sentence1)) | |||
| print(pipeline_ins.model.__class__) | |||
| self.assertTrue( | |||
| isinstance(pipeline_ins.model, SbertForSequenceClassification)) | |||
| isinstance(pipeline_ins.model, SequenceClassificationModel)) | |||
| @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
| @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
| def test_run_with_default_model(self): | |||
| pipeline_ins = pipeline(task=Tasks.sentiment_classification) | |||
| print(pipeline_ins(input=self.sentence1)) | |||
| self.assertTrue( | |||
| isinstance(pipeline_ins.model, SbertForSequenceClassification)) | |||
| isinstance(pipeline_ins.model, SequenceClassificationModel)) | |||
| if __name__ == '__main__': | |||
| @@ -1,70 +0,0 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| import unittest | |||
| from modelscope.hub.snapshot_download import snapshot_download | |||
| from modelscope.models import Model | |||
| from modelscope.models.nlp.task_models.sequence_classification import \ | |||
| SequenceClassificationModel | |||
| from modelscope.pipelines import pipeline | |||
| from modelscope.pipelines.nlp import SingleSentenceClassificationPipeline | |||
| from modelscope.preprocessors import SingleSentenceClassificationPreprocessor | |||
| from modelscope.utils.constant import Tasks | |||
| from modelscope.utils.test_utils import test_level | |||
| class SentimentClassificationTaskModelTest(unittest.TestCase): | |||
| model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base' | |||
| sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音' | |||
| @unittest.skip | |||
| def test_run_with_direct_file_download(self): | |||
| cache_path = snapshot_download(self.model_id) | |||
| tokenizer = SingleSentenceClassificationPreprocessor(cache_path) | |||
| model = SequenceClassificationModel.from_pretrained( | |||
| self.model_id, num_labels=2) | |||
| pipeline1 = SingleSentenceClassificationPipeline( | |||
| model, preprocessor=tokenizer) | |||
| pipeline2 = pipeline( | |||
| Tasks.sentiment_classification, | |||
| model=model, | |||
| preprocessor=tokenizer, | |||
| model_revision='beta') | |||
| print(f'sentence1: {self.sentence1}\n' | |||
| f'pipeline1:{pipeline1(input=self.sentence1)}') | |||
| print() | |||
| print(f'sentence1: {self.sentence1}\n' | |||
| f'pipeline1: {pipeline2(input=self.sentence1)}') | |||
| @unittest.skip | |||
| def test_run_with_model_from_modelhub(self): | |||
| model = Model.from_pretrained(self.model_id, revision='beta') | |||
| tokenizer = SingleSentenceClassificationPreprocessor(model.model_dir) | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.sentiment_classification, | |||
| model=model, | |||
| preprocessor=tokenizer) | |||
| print(pipeline_ins(input=self.sentence1)) | |||
| self.assertTrue( | |||
| isinstance(pipeline_ins.model, SequenceClassificationModel)) | |||
| @unittest.skip | |||
| def test_run_with_model_name(self): | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.sentiment_classification, | |||
| model=self.model_id, | |||
| model_revision='beta') | |||
| print(pipeline_ins(input=self.sentence1)) | |||
| self.assertTrue( | |||
| isinstance(pipeline_ins.model, SequenceClassificationModel)) | |||
| @unittest.skip | |||
| def test_run_with_default_model(self): | |||
| pipeline_ins = pipeline( | |||
| task=Tasks.sentiment_classification, model_revision='beta') | |||
| print(pipeline_ins(input=self.sentence1)) | |||
| self.assertTrue( | |||
| isinstance(pipeline_ins.model, SequenceClassificationModel)) | |||
| if __name__ == '__main__': | |||
| unittest.main() | |||
| @@ -53,8 +53,7 @@ class TestTrainerWithNlp(unittest.TestCase): | |||
| model=model_id, | |||
| train_dataset=self.dataset, | |||
| eval_dataset=self.dataset, | |||
| work_dir=self.tmp_dir, | |||
| model_revision='beta') | |||
| work_dir=self.tmp_dir) | |||
| trainer = build_trainer(default_args=kwargs) | |||
| trainer.train() | |||
| @@ -70,7 +69,7 @@ class TestTrainerWithNlp(unittest.TestCase): | |||
| @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||
| def test_trainer_with_user_defined_config(self): | |||
| model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base' | |||
| cfg = read_config(model_id, revision='beta') | |||
| cfg = read_config(model_id) | |||
| cfg.train.max_epochs = 20 | |||
| cfg.train.work_dir = self.tmp_dir | |||
| cfg_file = os.path.join(self.tmp_dir, 'config.json') | |||
| @@ -79,8 +78,7 @@ class TestTrainerWithNlp(unittest.TestCase): | |||
| model=model_id, | |||
| train_dataset=self.dataset, | |||
| eval_dataset=self.dataset, | |||
| cfg_file=cfg_file, | |||
| model_revision='beta') | |||
| cfg_file=cfg_file) | |||
| trainer = build_trainer(default_args=kwargs) | |||
| trainer.train() | |||