Browse Source

[to #42322933]商品显著性分割v1.0

商品显著性检测模型,依赖opencv,mmcv-full
        Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9909897
master
xingguang.zxg yingda.chen 3 years ago
parent
commit
0451627626
17 changed files with 1865 additions and 4 deletions
  1. +3
    -0
      data/test/images/shop_segmentation.jpg
  2. +2
    -0
      modelscope/metainfo.py
  3. +1
    -1
      modelscope/models/cv/__init__.py
  4. +1
    -0
      modelscope/models/cv/shop_segmentation/__init__.py
  5. +59
    -0
      modelscope/models/cv/shop_segmentation/common.py
  6. +122
    -0
      modelscope/models/cv/shop_segmentation/head_fpn.py
  7. +901
    -0
      modelscope/models/cv/shop_segmentation/models.py
  8. +217
    -0
      modelscope/models/cv/shop_segmentation/neck_fpn.py
  9. +157
    -0
      modelscope/models/cv/shop_segmentation/shop_seg_base.py
  10. +115
    -0
      modelscope/models/cv/shop_segmentation/shop_seg_model.py
  11. +199
    -0
      modelscope/models/cv/shop_segmentation/utils.py
  12. +7
    -1
      modelscope/outputs.py
  13. +3
    -1
      modelscope/pipelines/builder.py
  14. +2
    -1
      modelscope/pipelines/cv/__init__.py
  15. +51
    -0
      modelscope/pipelines/cv/shop_segmentation_pipleline.py
  16. +1
    -0
      modelscope/utils/constant.py
  17. +24
    -0
      tests/pipelines/test_shop_segmentation.py

+ 3
- 0
data/test/images/shop_segmentation.jpg View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:f5ecc371c8b0ca09d0e11df89bc549000937eafc451929586426fe657ade25a0
size 238607

+ 2
- 0
modelscope/metainfo.py View File

@@ -32,6 +32,7 @@ class Models(object):
vitadapter_semantic_segmentation = 'vitadapter-semantic-segmentation'
text_driven_segmentation = 'text-driven-segmentation'
resnet50_bert = 'resnet50-bert'
shop_segmentation = 'shop-segmentation'

# EasyCV models
yolox = 'YOLOX'
@@ -148,6 +149,7 @@ class Pipelines(object):
image_reid_person = 'passvitb-image-reid-person'
text_driven_segmentation = 'text-driven-segmentation'
movie_scene_segmentation = 'resnet50-bert-movie-scene-segmentation'
shop_segmentation = 'shop-segmentation'

# nlp tasks
sentence_similarity = 'sentence-similarity'


+ 1
- 1
modelscope/models/cv/__init__.py View File

@@ -11,7 +11,7 @@ from . import (action_recognition, animal_recognition, body_2d_keypoints,
image_to_image_generation, image_to_image_translation,
movie_scene_segmentation, object_detection,
product_retrieval_embedding, realtime_object_detection,
salient_detection, super_resolution,
salient_detection, shop_segmentation, super_resolution,
video_single_object_tracking, video_summarization, virual_tryon)

# yapf: enable

+ 1
- 0
modelscope/models/cv/shop_segmentation/__init__.py View File

@@ -0,0 +1 @@
from .shop_seg_base import SHOPSEG

+ 59
- 0
modelscope/models/cv/shop_segmentation/common.py View File

@@ -0,0 +1,59 @@
"""
Base modules are adapted from https://github.com/open-mmlab/mmcv/,
originally Apache 2.0 License, Copyright (c) 2018-2022 OpenMMLab,
https://github.com/open-mmlab/mmsegmentation/,
originally Apache 2.0 License, Copyright (c) 2020-2021 OpenMMLab,
and adapted from https://github.com/raoyongming/DenseCLIP/,
originally MIT License, Copyright (c) 2022 Rao, Yongming.
"""

import warnings

import torch.nn as nn
import torch.nn.functional as F


def resize(input,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
warning=True):
if warning:
if size is not None and align_corners:
input_h, input_w = tuple(int(x) for x in input.shape[2:])
output_h, output_w = tuple(int(x) for x in size)
if output_h > input_h or output_w > input_w:
if ((output_h > 1 and output_w > 1 and input_h > 1
and input_w > 1) and (output_h - 1) % (input_h - 1)
and (output_w - 1) % (input_w - 1)):
warnings.warn(
f'When align_corners={align_corners}, '
'the output would more aligned if '
f'input size {(input_h, input_w)} is `x+1` and '
f'out size {(output_h, output_w)} is `nx+1`')
return F.interpolate(input, size, scale_factor, mode, align_corners)


class Upsample(nn.Module):

def __init__(self,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None):
super(Upsample, self).__init__()
self.size = size
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.align_corners = align_corners

def forward(self, x):
if not self.size:
size = [int(t * self.scale_factor) for t in x.shape[-2:]]
else:
size = self.size
return resize(x, size, None, self.mode, self.align_corners)

+ 122
- 0
modelscope/models/cv/shop_segmentation/head_fpn.py View File

@@ -0,0 +1,122 @@
""" FPNHead
Base modules are adapted from https://github.com/open-mmlab/mmcv/,
originally Apache 2.0 License, Copyright (c) 2018-2022 OpenMMLab,
https://github.com/open-mmlab/mmsegmentation/,
originally Apache 2.0 License, Copyright (c) 2020-2021 OpenMMLab,
and adapted from https://github.com/raoyongming/DenseCLIP/,
originally MIT License, Copyright (c) 2022 Rao, Yongming.
"""

import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from timm.models.layers import drop, drop_path, trunc_normal_

from .common import Upsample, resize


class FPNHead(nn.Module):
"""Panoptic Feature Pyramid Networks.
This head is the implementation of `Semantic FPN
<https://arxiv.org/abs/1901.02446>`_.
Args:
feature_strides (tuple[int]): The strides for input feature maps.
stack_lateral. All strides suppose to be power of 2. The first
one is of largest resolution.
"""

def __init__(self,
channels,
num_classes,
dropout_ratio=0.1,
feature_strides=[4, 8, 16, 32],
align_corners=False,
**kwargs):
super(FPNHead, self).__init__()
self.act_cfg = dict(type='ReLU')
self.channels = channels
self.conv_cfg = None
self.norm_cfg = None
self.norm_cfg = dict(type='BN2d', requires_grad=True)
self.align_corners = align_corners
self.dropout_ratio = dropout_ratio
self.conv_seg = nn.Conv2d(channels, num_classes, kernel_size=1)
if dropout_ratio > 0:
self.dropout = nn.Dropout2d(dropout_ratio)
else:
self.dropout = None
self.in_index = [0, 1, 2, 3]
assert min(feature_strides) == feature_strides[0]
self.feature_strides = feature_strides
self.scale_heads = nn.ModuleList()
for i in range(len(feature_strides)):
head_length = max(
1,
int(np.log2(feature_strides[i]) - np.log2(feature_strides[0])))
scale_head = []
for k in range(head_length):
scale_head.append(
ConvModule(
self.channels,
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
if feature_strides[i] != feature_strides[0]:
scale_head.append(
Upsample(
scale_factor=2,
mode='bilinear',
align_corners=self.align_corners))
self.scale_heads.append(nn.Sequential(*scale_head))

self.apply(self._init_weights)

def _transform_inputs(self, inputs):
"""Transform inputs for decoder.

Args:
inputs (list[Tensor]): List of multi-level img features.

Returns:
Tensor: The transformed inputs
"""
inputs = [inputs[i] for i in self.in_index]
return inputs

def cls_seg(self, feat):
"""Classify each pixel."""
if self.dropout is not None:
feat = self.dropout(feat)
output = self.conv_seg(feat)
return output

def forward(self, inputs):
x = self._transform_inputs(inputs)
output = self.scale_heads[0](x[0])
for i in range(1, len(self.feature_strides)):
# non inplace
output = output + resize(
self.scale_heads[i](x[i]),
size=output.shape[2:],
mode='bilinear',
align_corners=self.align_corners)

output = self.cls_seg(output)
return output

def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight.data, nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias.data, 0)

+ 901
- 0
modelscope/models/cv/shop_segmentation/models.py View File

@@ -0,0 +1,901 @@
"""
Base modules are adapted from https://github.com/open-mmlab/mmcv/,
originally Apache 2.0 License, Copyright (c) 2018-2022 OpenMMLab,
https://github.com/open-mmlab/mmsegmentation/,
originally Apache 2.0 License, Copyright (c) 2020-2021 OpenMMLab,
and adapted from https://github.com/raoyongming/DenseCLIP/,
originally MIT License, Copyright (c) 2022 Rao, Yongming.
"""

import math
from collections import OrderedDict

import torch
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import drop, drop_path, trunc_normal_
from torch import nn


class Bottleneck(nn.Module):
expansion = 4

def __init__(self, inplanes, planes, stride=1):
super().__init__()

# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)

self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)

self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)

self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride

if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(
OrderedDict([('-1', nn.AvgPool2d(stride)),
('0',
nn.Conv2d(
inplanes,
planes * self.expansion,
1,
stride=1,
bias=False)),
('1', nn.BatchNorm2d(planes * self.expansion))]))

def forward(self, x: torch.Tensor):
identity = x

out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)
return out


class AttentionPool2d(nn.Module):

def __init__(self,
spacial_dim: int,
embed_dim: int,
num_heads: int,
output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
self.embed_dim = embed_dim
self.spacial_dim = spacial_dim

def forward(self, x):
B, C, H, W = x.shape
x = x.reshape(x.shape[0], x.shape[1],
x.shape[2] * x.shape[3]).permute(2, 0,
1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC

cls_pos = self.positional_embedding[0:1, :]
spatial_pos = F.interpolate(
self.positional_embedding[1:, ].reshape(1, self.spacial_dim,
self.spacial_dim,
self.embed_dim).permute(
0, 3, 1, 2),
size=(H, W),
mode='bilinear')
spatial_pos = spatial_pos.reshape(self.embed_dim, H * W).permute(1, 0)
positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0)

x = x + positional_embedding[:, None, :]
x, _ = F.multi_head_attention_forward(
query=x,
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat(
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False)

x = x.permute(1, 2, 0)
global_feat = x[:, :, 0]
feature_map = x[:, :, 1:].reshape(B, -1, H, W)
return global_feat, feature_map


class CLIPResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""

def __init__(self,
layers,
output_dim=512,
input_resolution=224,
width=64,
pretrained=None,
**kwargs):
super().__init__()
self.pretrained = pretrained
self.output_dim = output_dim
self.input_resolution = input_resolution

# the 3-layer stem
self.conv1 = nn.Conv2d(
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(
width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(
width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)

# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)

def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(
pretrained, map_location='cpu').float().state_dict()

state_dict = {}

for k in checkpoint.keys():
if k.startswith('visual.'):
new_k = k.replace('visual.', '')
state_dict[new_k] = checkpoint[k]

u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in CLIPResNet')

def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]

self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))

return nn.Sequential(*layers)

def forward(self, x):

def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2),
(self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x

x = x.type(self.conv1.weight.dtype)
x = stem(x)

outs = []
x = self.layer1(x)
outs.append(x)
x = self.layer2(x)
outs.append(x)
x = self.layer3(x)
outs.append(x)
x = self.layer4(x)
outs.append(x)

return tuple(outs)


class CLIPResNetWithAttention(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""

def __init__(self,
layers,
output_dim=1024,
input_resolution=224,
width=64,
pretrained=None,
**kwargs):
super().__init__()
self.pretrained = pretrained
self.output_dim = output_dim
self.input_resolution = input_resolution

# the 3-layer stem
self.conv1 = nn.Conv2d(
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(
width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(
width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)

# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)

embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, 32,
output_dim)

def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(
pretrained, map_location='cpu').float().state_dict()

state_dict = {}

for k in checkpoint.keys():
if k.startswith('visual.'):
new_k = k.replace('visual.', '')
state_dict[new_k] = checkpoint[k]

if 'positional_embedding' in new_k:
if self.attnpool.positional_embedding.shape != state_dict[
new_k].shape:
print(
f'Resize the pos_embed shape from {state_dict[new_k].shape}'
f' to {self.attnpool.positional_embedding.shape}'
)
cls_pos = state_dict[new_k][0:1, :]
H = W = self.input_resolution // 32
old_h = int(
math.sqrt(state_dict[new_k][1:, ].shape[0]))
spatial_pos = F.interpolate(
state_dict[new_k][1:, ].reshape(
1, old_h, old_h,
cls_pos.shape[1]).permute(0, 3, 1, 2),
size=(H, W),
mode='bilinear')
spatial_pos = spatial_pos.reshape(
cls_pos.shape[1], H * W).permute(1, 0)
positional_embedding = torch.cat(
[cls_pos, spatial_pos], dim=0)
state_dict[new_k] = positional_embedding
assert self.attnpool.positional_embedding.shape == state_dict[
new_k].shape

u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in CLIPResNet')

def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]

self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))

return nn.Sequential(*layers)

def forward(self, x):

def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2),
(self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x

x = x.type(self.conv1.weight.dtype)
x = stem(x)

outs = []
x = self.layer1(x)
outs.append(x)
x = self.layer2(x)
outs.append(x)
x = self.layer3(x)
outs.append(x)
x = self.layer4(x)
outs.append(x)

x_global, x_local = self.attnpool(x)
outs.append([x_global, x_local])

return tuple(outs)


class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""

def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)


class QuickGELU(nn.Module):

def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)


class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""

def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob

def forward(self, x):
return drop_path(x, self.drop_prob, self.training)

def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)


class ResidualAttentionBlock(nn.Module):

def __init__(self,
d_model: int,
n_head: int,
attn_mask: torch.Tensor = None,
drop_path=0.):
super().__init__()

self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)),
('gelu', QuickGELU()),
('c_proj', nn.Linear(d_model * 4, d_model))]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask

self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()

def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(
dtype=x.dtype,
device=x.device) if self.attn_mask is not None else None
return self.attn(
x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

def forward(self, x: torch.Tensor):
x = x + self.drop_path(self.attention(self.ln_1(x)))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x


class Transformer(nn.Module):

def __init__(self,
width: int,
layers: int,
heads: int,
attn_mask: torch.Tensor = None,
drop_path_rate=0.):
super().__init__()
self.width = width
self.layers = layers
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)
] # stochastic depth decay rule
self.resblocks = nn.Sequential(*[
ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
for i in range(layers)
])

def forward(self, x: torch.Tensor):
return self.resblocks(x)


class Attention(nn.Module):

def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5

self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)

self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)

def forward(self, q, k, v):
B, N, C = q.shape
assert k.shape == v.shape
B, M, C = k.shape
q = self.q_proj(q).reshape(B, N, self.num_heads, C // self.num_heads)
k = self.k_proj(k).reshape(B, M, self.num_heads, C // self.num_heads)
v = self.v_proj(v).reshape(B, M, self.num_heads, C // self.num_heads)

attn = torch.einsum('bnkc,bmkc->bknm', q, k) * self.scale

attn = attn.softmax(dim=-1)

x = torch.einsum('bknm,bmkc->bnkc', attn, v).reshape(B, N, C)

x = self.proj(x)
x = self.proj_drop(x)
return x


class TransformerDecoderLayer(nn.Module):

def __init__(
self,
d_model,
nhead,
dropout=0.1,
):
super().__init__()
self.self_attn = Attention(d_model, nhead, proj_drop=dropout)
self.cross_attn = Attention(d_model, nhead, proj_drop=dropout)

self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)

self.mlp = nn.Sequential(
nn.Linear(d_model, d_model * 4), nn.GELU(), nn.Dropout(dropout),
nn.Linear(d_model * 4, d_model))

def forward(self, x, mem):
q = k = v = self.norm1(x)
x = x + self.self_attn(q, k, v)
q = self.norm2(x)
x = x + self.cross_attn(q, mem, mem)
x = x + self.dropout(self.mlp(self.norm3(x)))
return x


class CLIPVisionTransformer(nn.Module):

def __init__(self,
input_resolution=224,
patch_size=32,
width=768,
layers=12,
heads=12,
output_dim=512,
drop_path_rate=0.0,
out_indices=[3, 5, 7, 11],
pretrained=None,
get_embeddings=False,
**kwargs):
super().__init__()
self.pretrained = pretrained
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False)

scale = width**-0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(
(input_resolution // patch_size)**2 + 1, width))
self.spatial_size = input_resolution // patch_size
self.ln_pre = LayerNorm(width)
self.get_embeddings = get_embeddings

self.transformer = Transformer(
width, layers, heads, drop_path_rate=drop_path_rate)

self.out_indices = out_indices

if get_embeddings:
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

embed_dim = width

if patch_size == 16:
self.fpn1 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.ConvTranspose2d(
embed_dim, embed_dim, kernel_size=2, stride=2),
nn.SyncBatchNorm(embed_dim),
nn.GELU(),
nn.ConvTranspose2d(
embed_dim, embed_dim, kernel_size=2, stride=2),
)

self.fpn2 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.ConvTranspose2d(
embed_dim, embed_dim, kernel_size=2, stride=2),
)

self.fpn3 = nn.GroupNorm(1, embed_dim)

self.fpn4 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.MaxPool2d(kernel_size=2, stride=2))

elif patch_size == 8:
self.fpn1 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.ConvTranspose2d(
embed_dim, embed_dim, kernel_size=2, stride=2),
)

self.fpn2 = nn.GroupNorm(1, embed_dim)

self.fpn3 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.MaxPool2d(kernel_size=2, stride=2),
)

self.fpn4 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.MaxPool2d(kernel_size=4, stride=4),
)

def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(
pretrained, map_location='cpu').float().state_dict()

state_dict = {}

for k in checkpoint.keys():
if k.startswith('visual.'):
new_k = k.replace('visual.', '')
state_dict[new_k] = checkpoint[k]

if 'positional_embedding' in state_dict.keys():
if self.positional_embedding.shape != state_dict[
'positional_embedding'].shape:
print(
f'Resize the pos_embed shape from {state_dict["positional_embedding"].shape} to'
f' {self.positional_embedding.shape}')
cls_pos = state_dict['positional_embedding'][0:1, :]
spatial_pos = F.interpolate(
state_dict['positional_embedding'][1:, ].reshape(
1, 14, 14, 768).permute(0, 3, 1, 2),
size=(self.spatial_size, self.spatial_size),
mode='bilinear')
spatial_pos = spatial_pos.reshape(
768,
self.spatial_size * self.spatial_size).permute(1, 0)
positional_embedding = torch.cat([cls_pos, spatial_pos],
dim=0)
state_dict['positional_embedding'] = positional_embedding
assert self.positional_embedding.shape == state_dict[
'positional_embedding'].shape

u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in vision transformer')

def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
B, C, H, W = x.shape
x = x.reshape(x.shape[0], x.shape[1],
-1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x1 = self.class_embedding.to(x.dtype)
x2 = torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device)
x = torch.cat([x1 + x2, x], dim=1)
pos = self.positional_embedding.to(x.dtype)
cls_pos = pos[0, :] + self.class_embedding.to(x.dtype)
spatial_pos = F.interpolate(
pos[1:, ].reshape(1, self.spatial_size, self.spatial_size,
C).permute(0, 3, 1, 2),
size=(H, W),
mode='bilinear')
spatial_pos = spatial_pos.reshape(1, C, H * W).permute(0, 2, 1)
pos = torch.cat([cls_pos.reshape(1, 1, C), spatial_pos], dim=1)
x = x + pos
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND

gradientcheckpoint = False

features = []
for i, blk in enumerate(self.transformer.resblocks):
if gradientcheckpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)

if i in self.out_indices:
xp = x.permute(1, 0, 2)[:,
1:, :].permute(0, 2,
1).reshape(B, -1, H, W)
features.append(xp.contiguous())

ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])

if self.get_embeddings:
x = x.permute(1, 0, 2)
x = self.ln_post(x)
x = x @ self.proj

global_embedding = x[:, 0]
visual_embedding = x[:, 1:].reshape(B, H, W,
-1).permute(0, 3, 1,
2) # B C H W

features.append([global_embedding, visual_embedding])

return tuple(features)


class CLIPTextEncoder(nn.Module):

def __init__(self,
context_length=77,
vocab_size=49408,
transformer_width=512,
transformer_heads=8,
transformer_layers=12,
embed_dim=1024,
out_dim=256,
pretrained=None,
**kwargs):
super().__init__()

self.pretrained = pretrained

self.context_length = context_length

self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask())

self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(
torch.empty(transformer_width, embed_dim))

def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(
pretrained, map_location='cpu').float().state_dict()

state_dict = {}

for k in checkpoint.keys():
if k.startswith('transformer.'):
state_dict[k] = checkpoint[k]

if k == 'positional_embedding' or k == 'text_projection' or k.startswith(
'token_embedding') or k.startswith('ln_final'):
if k == 'positional_embedding' and checkpoint[k].size(
0) > self.context_length:
checkpoint[k] = checkpoint[k][:self.context_length]
print('positional_embedding is tuncated from 77 to',
self.context_length)
state_dict[k] = checkpoint[k]

u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in text encoder')

def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float('-inf'))
mask.triu_(1) # zero out the lower diagonal
return mask

def forward(self, text):
x = self.token_embedding(text)
x = x + self.positional_embedding
x = x.permute(1, 0, 2)
x = self.transformer(x)
x = x.permute(1, 0, 2)
x = self.ln_final(x)
x = x[torch.arange(x.shape[0]),
text.argmax(dim=-1), ...] @ self.text_projection
return x


class CLIPTextContextEncoder(nn.Module):

def __init__(self,
context_length=22,
vocab_size=49408,
transformer_width=512,
transformer_heads=8,
transformer_layers=12,
embed_dim=1024,
out_dim=256,
pretrained=None,
**kwargs):
super().__init__()

self.pretrained = pretrained

self.context_length = context_length

self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask())

self.embed_dim = embed_dim

self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(
torch.empty(transformer_width, embed_dim))

def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(
pretrained, map_location='cpu').float().state_dict()

state_dict = {}

for k in checkpoint.keys():
if k.startswith('transformer.'):
state_dict[k] = checkpoint[k]

if k == 'positional_embedding' or k == 'text_projection' or k.startswith(
'token_embedding') or k.startswith('ln_final'):
if k == 'positional_embedding' and checkpoint[k].size(
0) > self.context_length:
checkpoint[k] = checkpoint[k][:self.context_length]
print('positional_embedding is tuncated from 77 to',
self.context_length)
state_dict[k] = checkpoint[k]

u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in text encoder')

def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float('-inf'))
mask.triu_(1) # zero out the lower diagonal
return mask

def forward(self, text, context=None):
x_text = self.token_embedding(text) # n_clas, n_text, C
K, N1, C = x_text.shape # 150类 * 5??? * 512
B, N2, C = context.shape # 1 * 8 * 512

eos_indx = text.argmax(dim=-1) + N2
eos_indx = eos_indx.reshape(1, K).expand(B, K).reshape(-1)

x_text = x_text.reshape(1, K, N1, C).expand(B, K, N1, C)
context = context.reshape(B, 1, N2, C).expand(B, K, N2, C)

x = torch.cat([x_text[:, :, 0:1], context, x_text[:, :, 1:]],
dim=2).reshape(B * K, N1 + N2, C)
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
x = x[torch.arange(x.shape[0]), eos_indx] @ self.text_projection
x = x.reshape(B, K, self.embed_dim)
return x


class ContextDecoder(nn.Module):

def __init__(self,
transformer_width=256,
transformer_heads=4,
transformer_layers=6,
visual_dim=1024,
dropout=0.1,
**kwargs):
super().__init__()

self.memory_proj = nn.Sequential(
nn.LayerNorm(visual_dim),
nn.Linear(visual_dim, transformer_width),
nn.LayerNorm(transformer_width),
)

self.text_proj = nn.Sequential(
nn.LayerNorm(visual_dim),
nn.Linear(visual_dim, transformer_width),
)

self.decoder = nn.ModuleList([
TransformerDecoderLayer(transformer_width, transformer_heads,
dropout) for _ in range(transformer_layers)
])

self.out_proj = nn.Sequential(
nn.LayerNorm(transformer_width),
nn.Linear(transformer_width, visual_dim))

self.apply(self._init_weights)

def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)

def forward(self, text, visual):
B, N, C = visual.shape
visual = self.memory_proj(visual)
x = self.text_proj(text)

for layer in self.decoder:
x = layer(x, visual)

return self.out_proj(x)

+ 217
- 0
modelscope/models/cv/shop_segmentation/neck_fpn.py View File

@@ -0,0 +1,217 @@
""" FPNneck
Base modules are adapted from https://github.com/open-mmlab/mmcv/,
originally Apache 2.0 License, Copyright (c) 2018-2022 OpenMMLab,
https://github.com/open-mmlab/mmsegmentation/,
originally Apache 2.0 License, Copyright (c) 2020-2021 OpenMMLab,
and adapted from https://github.com/raoyongming/DenseCLIP/,
originally MIT License, Copyright (c) 2022 Rao, Yongming.
"""

import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from timm.models.layers import drop, drop_path, trunc_normal_

from .common import resize


class FPN(nn.Module):
"""Feature Pyramid Network.

This neck is the implementation of `Feature Pyramid Networks for Object
Detection <https://arxiv.org/abs/1612.03144>`_.

Args:
in_channels (list[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale).
num_outs (int): Number of output scales.
start_level (int): Index of the start input backbone level used to
build the feature pyramid. Default: 0.
end_level (int): Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.
add_extra_convs (bool | str): If bool, it decides whether to add conv
layers on top of the original feature maps. Default to False.
If True, its actual mode is specified by `extra_convs_on_inputs`.
If str, it specifies the source feature map of the extra convs.
Only the following options are allowed

- 'on_input': Last feat map of neck inputs (i.e. backbone feature).
- 'on_lateral': Last feature map after lateral convs.
- 'on_output': The last output feature map after fpn convs.
extra_convs_on_inputs (bool, deprecated): Whether to apply extra convs
on the original feature from the backbone. If True,
it is equivalent to `add_extra_convs='on_input'`. If False, it is
equivalent to set `add_extra_convs='on_output'`. Default to True.
relu_before_extra_convs (bool): Whether to apply relu before the extra
conv. Default: False.
no_norm_on_lateral (bool): Whether to apply norm on lateral.
Default: False.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Config dict for normalization layer. Default: None.
act_cfg (dict): Config dict for activation layer in ConvModule.
Default: None.
upsample_cfg (dict): Config dict for interpolate layer.
Default: dict(mode='nearest').
init_cfg (dict or list[dict], optional): Initialization config dict.

"""

def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
add_extra_convs=False,
extra_convs_on_inputs=False,
relu_before_extra_convs=False,
no_norm_on_lateral=False,
conv_cfg=None,
norm_cfg=None,
act_cfg=None,
upsample_cfg=dict(mode='nearest')):
super(FPN, self).__init__()
assert isinstance(in_channels, list)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_ins = len(in_channels)
self.num_outs = num_outs
self.relu_before_extra_convs = relu_before_extra_convs
self.no_norm_on_lateral = no_norm_on_lateral
self.fp16_enabled = False
self.upsample_cfg = upsample_cfg.copy()

if end_level == -1:
self.backbone_end_level = self.num_ins
assert num_outs >= self.num_ins - start_level
else:
# if end_level < inputs, no extra level is allowed
self.backbone_end_level = end_level
assert end_level <= len(in_channels)
assert num_outs == end_level - start_level
self.start_level = start_level
self.end_level = end_level
self.add_extra_convs = add_extra_convs
assert isinstance(add_extra_convs, (str, bool))
if isinstance(add_extra_convs, str):
# Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output'
assert add_extra_convs in ('on_input', 'on_lateral', 'on_output')
elif add_extra_convs: # True
if extra_convs_on_inputs:
# For compatibility with previous release
# TODO: deprecate `extra_convs_on_inputs`
self.add_extra_convs = 'on_input'
else:
self.add_extra_convs = 'on_output'

self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()

for i in range(self.start_level, self.backbone_end_level):
l_conv = ConvModule(
in_channels[i],
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg if not self.no_norm_on_lateral else None,
act_cfg=act_cfg,
inplace=False)
fpn_conv = ConvModule(
out_channels,
out_channels,
3,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
inplace=False)

self.lateral_convs.append(l_conv)
self.fpn_convs.append(fpn_conv)

# add extra conv layers (e.g., RetinaNet)
extra_levels = num_outs - self.backbone_end_level + self.start_level
if self.add_extra_convs and extra_levels >= 1:
for i in range(extra_levels):
if i == 0 and self.add_extra_convs == 'on_input':
in_channels = self.in_channels[self.backbone_end_level - 1]
else:
in_channels = out_channels
extra_fpn_conv = ConvModule(
in_channels,
out_channels,
3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
inplace=False)
self.fpn_convs.append(extra_fpn_conv)

self.apply(self._init_weights)

def forward(self, inputs):
assert len(inputs) == len(self.in_channels)

# build laterals
laterals = [
lateral_conv(inputs[i + self.start_level])
for i, lateral_conv in enumerate(self.lateral_convs)
]

# build top-down path
used_backbone_levels = len(laterals)
for i in range(used_backbone_levels - 1, 0, -1):
# In some cases, fixing `scale factor` (e.g. 2) is preferred, but
# it cannot co-exist with `size` in `F.interpolate`.
if 'scale_factor' in self.upsample_cfg:
laterals[i - 1] = laterals[i - 1] + resize(
laterals[i], **self.upsample_cfg)
else:
prev_shape = laterals[i - 1].shape[2:]
laterals[i - 1] = laterals[i - 1] + resize(
laterals[i], size=prev_shape, **self.upsample_cfg)

# build outputs
# part 1: from original levels
outs = [
self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)
]
# part 2: add extra levels
if self.num_outs > len(outs):
# use max pool to get more levels on top of outputs
# (e.g., Faster R-CNN, Mask R-CNN)
if not self.add_extra_convs:
for i in range(self.num_outs - used_backbone_levels):
outs.append(F.max_pool2d(outs[-1], 1, stride=2))
# add conv layers on top of original feature maps (RetinaNet)
else:
if self.add_extra_convs == 'on_input':
extra_source = inputs[self.backbone_end_level - 1]
elif self.add_extra_convs == 'on_lateral':
extra_source = laterals[-1]
elif self.add_extra_convs == 'on_output':
extra_source = outs[-1]
else:
raise NotImplementedError
outs.append(self.fpn_convs[used_backbone_levels](extra_source))
for i in range(used_backbone_levels + 1, self.num_outs):
if self.relu_before_extra_convs:
outs.append(self.fpn_convs[i](F.relu(outs[-1])))
else:
outs.append(self.fpn_convs[i](outs[-1]))
return tuple(outs)

def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight.data, nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias.data, 0)

+ 157
- 0
modelscope/models/cv/shop_segmentation/shop_seg_base.py View File

@@ -0,0 +1,157 @@
"""
Base modules are adapted from https://github.com/open-mmlab/mmcv/,
originally Apache 2.0 License, Copyright (c) 2018-2022 OpenMMLab,
https://github.com/open-mmlab/mmsegmentation/,
originally Apache 2.0 License, Copyright (c) 2020-2021 OpenMMLab,
and adapted from https://github.com/raoyongming/DenseCLIP/,
originally MIT License, Copyright (c) 2022 Rao, Yongming.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

from .head_fpn import FPNHead
from .models import (CLIPTextContextEncoder, CLIPVisionTransformer,
ContextDecoder)
from .neck_fpn import FPN
from .utils import SimpleTokenizer, tokenize


class SHOPSEG(nn.Module):
"""Encoder Decoder segmentors.

EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
"""

def __init__(self,
model_dir,
context_length=22,
context_feature='attention',
score_concat_index=2,
tau=0.07,
token_embed_dim=512,
text_dim=512,
**args):
super(SHOPSEG, self).__init__()

self.model_dir = model_dir
self.tokenizer = SimpleTokenizer(model_dir
+ '/bpe_simple_vocab_16e6.txt.gz')

backbone = CLIPVisionTransformer(
input_resolution=1024,
patch_size=16,
width=768,
layers=12,
output_dim=512,
drop_path_rate=0.1,
pretrained=False,
get_embeddings=True)

text_encoder = CLIPTextContextEncoder(
context_length=30,
vocab_size=49408,
transformer_width=512,
transformer_heads=8,
transformer_layers=12,
embed_dim=512,
pretrained=False)

context_decoder = ContextDecoder(
transformer_width=256,
transformer_heads=4,
transformer_layers=3,
visual_dim=512,
dropout=0.1)
neck = FPN(
in_channels=[768, 768, 768 + 2, 768], out_channels=256, num_outs=4)
head_fpd = FPNHead(channels=256, num_classes=2)

self.backbone = backbone
self.text_encoder = text_encoder
self.context_decoder = context_decoder
self.context_length = context_length
self.score_concat_index = score_concat_index

self.context_feature = context_feature
self.tau = tau
context_length = self.text_encoder.context_length - self.context_length
self.contexts = nn.Parameter(
torch.randn(1, context_length, token_embed_dim))
nn.init.trunc_normal_(self.contexts)
self.gamma = nn.Parameter(torch.ones(text_dim) * 1e-4)

self.neck = neck
self.head_fpn = head_fpd

self.tau = 0.07

def encode_text(self, text, context_length):
output = tokenize(self.tokenizer, text, context_length, True)
return output

def extract_feat(self, img):
"""Extract features from images."""
x = self.backbone(img)
return x

def after_extract_feat(self, x, name_list):
x_orig = list(x[0:4])
global_feat, visual_embeddings = x[4]
B, C, H, W = visual_embeddings.shape
if self.context_feature == 'attention':
x1 = global_feat.reshape(B, C, 1)
x2 = visual_embeddings.reshape(B, C, H * W)
visual_context = torch.cat([x1, x2], dim=2).permute(0, 2, 1)
texts = torch.cat([
self.encode_text(c, context_length=self.context_length)
for c in name_list
])
x1 = texts.to(global_feat.device)
x1 = self.text_encoder(x1, self.contexts)
text_embeddings = x1.expand(B, -1, -1)
# update text_embeddings by visual_context!
# (B, 1, C)
text_diff = self.context_decoder(text_embeddings, visual_context)
# (B, K, C)
text_embeddings = text_embeddings + self.gamma * text_diff

# compute score map and concat
B, K, C = text_embeddings.shape
visual_embeddings = F.normalize(visual_embeddings, dim=1, p=2)
text = F.normalize(text_embeddings, dim=2, p=2)
score_map_list = []
bsz = B
for i in range(bsz):
ind = 2 * i
sub_text = torch.cat(
[text[i:i + 1, ind:ind + 1], text[i:i + 1, ind + 1:ind + 2]],
dim=1) # 1 * 2 * h * w

sub_score_map = torch.einsum('bchw,bkc->bkhw',
visual_embeddings[i:i + 1],
sub_text) # 1 * 2 * h * w
score_map_list.append(sub_score_map)
score_map = torch.cat(score_map_list, dim=0) # b * 2 * h * w
x_orig[self.score_concat_index] = torch.cat(
[x_orig[self.score_concat_index], score_map], dim=1)
return x_orig, score_map

def forward(self, img, text_list=None):
if text_list is None:
bsz = img.size()[0]
text_list = ['foregeound'] * bsz
x = self.extract_feat(img)
_x_orig = [x[i] for i in range(4)]
name_list = []
for name in text_list:
name_list.append('others')
name_list.append(name[0:20])
x_orig, score_map = self.after_extract_feat(x, name_list)
x_orig = list(self.neck(x_orig))
_x_orig = x_orig
pred = self.head_fpn(_x_orig)
return pred

+ 115
- 0
modelscope/models/cv/shop_segmentation/shop_seg_model.py View File

@@ -0,0 +1,115 @@
import os.path as osp
from typing import Any, Dict

import json
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image

from modelscope.metainfo import Models
from modelscope.models.base import TorchModel
from modelscope.models.builder import MODELS
from modelscope.models.cv.shop_segmentation import SHOPSEG
from modelscope.outputs import OutputKeys
from modelscope.preprocessors import LoadImage
from modelscope.utils.constant import ModelFile, Tasks
from modelscope.utils.logger import get_logger

logger = get_logger()

__all__ = ['ShopSegmentation']


@MODELS.register_module(
Tasks.shop_segmentation, module_name=Models.shop_segmentation)
class ShopSegmentation(TorchModel):
""" shop segmentation model.
"""

def __init__(self, model_dir, device_id=0, *args, **kwargs):
super().__init__(
model_dir=model_dir, device_id=device_id, *args, **kwargs)

self.model = SHOPSEG(model_dir=model_dir)
pretrained_params = torch.load('{}/{}'.format(
model_dir, ModelFile.TORCH_MODEL_BIN_FILE))

self.model.load_state_dict(pretrained_params)
self.model.eval()
self.device_id = device_id
if self.device_id >= 0 and torch.cuda.is_available():
self.model.to('cuda:{}'.format(self.device_id))
logger.info('Use GPU: {}'.format(self.device_id))
else:
self.device_id = -1
logger.info('Use CPU for inference')

def preprocess(self, img, size=1024):
mean = [0.48145466, 0.4578275, 0.40821073]
std = [0.26862954, 0.26130258, 0.27577711]
h, w, c = img.shape
max_hw = max(h, w)
ratio = 1.0 * size / max_hw
crop_h, crop_w = int(ratio * h), int(ratio * w)
pil_img = Image.fromarray(img)
pil_img = pil_img.resize((crop_w, crop_h), Image.BILINEAR)
np_img = np.array(pil_img, dtype=np.float32) / 255.

for j in range(3):
np_img[:, :, j] = (np_img[:, :, j] - mean[j]) / std[j]

img_pad = np.zeros((size, size, 3), dtype=np.float32)
img_pad[:crop_h, :crop_w] = np_img

img_pad = torch.from_numpy(img_pad).permute(2, 0,
1).unsqueeze(0).float()
return img_pad, h, w, crop_h, crop_w

def postprocess(self, tensors, crop_h, crop_w, ori_h, ori_w):
output = np.clip(tensors * 255., a_min=0, a_max=255.)
crop_output = np.array(output[:crop_h, :crop_w], dtype=np.uint8)

pil_output = Image.fromarray(crop_output)
pil_output = pil_output.resize((ori_w, ori_h), Image.BILINEAR)
np_output = np.array(pil_output, dtype=np.uint8)

np_output[np_output < 128] = 0
np_output[np_output >= 128] = 255
np_output = np.uint8(np_output)
return np_output

def forward(self, image):
"""
image should be numpy array, dtype=np.uint8, shape: height*width*3
"""
image_tensor, ori_h, ori_w, crop_h, crop_w = self.preprocess(
image, size=1024)
pred = self.inference(image_tensor)
msk = self.postprocess(pred, crop_h, crop_w, ori_h, ori_w, size=1024)

outputs = {OutputKeys.MASKS: msk}
return outputs

def inference(self, image):
"""
image should be tensor, 1 * 3 * 1024 * 1024
"""
with torch.no_grad():
if self.device_id == -1:
output = self.model(image)
else:
device = torch.device('cuda', self.device_id)
output = self.model(image.to(device))
output = F.interpolate(output, size=(1024, 1024), mode='bilinear')
output = F.softmax(output, dim=1)
output = torch.argmax(output, dim=1)
output = output[0]
if self.device_id == -1:
pred = output.data.numpy()
else:
pred = output.data.cpu().numpy()

del output
return pred

+ 199
- 0
modelscope/models/cv/shop_segmentation/utils.py View File

@@ -0,0 +1,199 @@
""" CLIP Tokenizer
Adapted from https://github.com/openai/CLIP.
Originally MIT License, Copyright (c) 2021 OpenAI.
"""

import gzip
import html
import os
from functools import lru_cache
from typing import Any, List, Union

import ftfy
import regex as re
import torch


@lru_cache()
def default_bpe():
return os.path.join(
os.path.dirname(os.path.abspath(__file__)),
'bpe_simple_vocab_16e6.txt.gz')


@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord('!'),
ord('~') + 1)) + list(range(
ord('¡'),
ord('¬') + 1)) + list(range(ord('®'),
ord('ÿ') + 1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))


def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs


def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()


def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text


class SimpleTokenizer(object):

def __init__(self, bpe_path: str = default_bpe()):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = gzip.open(bpe_path).read().decode('utf-8').split('\n')
merges = merges[1:49152 - 256 - 2 + 1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v + '</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {
'<|startoftext|>': '<|startoftext|>',
'<|endoftext|>': '<|endoftext|>'
}
self.pat = re.compile(
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
re.IGNORECASE)

def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + (token[-1] + '</w>', )
pairs = get_pairs(word)

if not pairs:
return token + '</w>'

error_list = []
while True:
bigram = min(
pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except Exception as err:
error_list.append(err)
new_word.extend(word[i:])
break

if word[i] == first and i < len(word) - 1 and word[
i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word

def encode(self, text):
bpe_tokens = []
text = whitespace_clean(basic_clean(text)).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b]
for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token]
for bpe_token in self.bpe(token).split(' '))
return bpe_tokens

def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode(
'utf-8', errors='replace').replace('</w>', ' ')
return text


def tokenize(tokenizer,
texts,
context_length: int = 77,
truncate: bool = False) -> torch.LongTensor:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool
Whether to truncate the text in case its encoding is longer than the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]

sot_token = tokenizer.encoder['<|startoftext|>']
eot_token = tokenizer.encoder['<|endoftext|>']
all_tokens = [[sot_token] + tokenizer.encode(text) + [eot_token]
for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)

for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate:
tokens = tokens[:context_length]
tokens[-1] = eot_token
else:
raise RuntimeError(
f'Input {texts[i]} is too long for context length {context_length}'
)
result[i, :len(tokens)] = torch.tensor(tokens)

return result

+ 7
- 1
modelscope/outputs.py View File

@@ -259,7 +259,13 @@ TASK_OUTPUTS = {
# ]
# }
Tasks.text_driven_segmentation: [OutputKeys.MASKS],

# shop segmentation result for single sample
# {
# "masks": [
# np.array # 2D array containing only 0, 255
# ]
# }
Tasks.shop_segmentation: [OutputKeys.MASKS],
# movide scene segmentation result for a single video
# {
# "split_video_num":3,


+ 3
- 1
modelscope/pipelines/builder.py View File

@@ -156,7 +156,9 @@ DEFAULT_MODEL_FOR_PIPELINE = {
'damo/cv_vitl16_segmentation_text-driven-seg'),
Tasks.movie_scene_segmentation:
(Pipelines.movie_scene_segmentation,
'damo/cv_resnet50-bert_video-scene-segmentation_movienet')
'damo/cv_resnet50-bert_video-scene-segmentation_movienet'),
Tasks.shop_segmentation: (Pipelines.shop_segmentation,
'damo/cv_vitb16_segmentation_shop-seg'),
}




+ 2
- 1
modelscope/pipelines/cv/__init__.py View File

@@ -43,10 +43,10 @@ if TYPE_CHECKING:
from .tinynas_classification_pipeline import TinynasClassificationPipeline
from .video_category_pipeline import VideoCategoryPipeline
from .virtual_try_on_pipeline import VirtualTryonPipeline
from .shop_segmentation_pipleline import ShopSegmentationPipeline
from .easycv_pipelines import EasyCVDetectionPipeline, EasyCVSegmentationPipeline, Face2DKeypointsPipeline
from .text_driven_segmentation_pipleline import TextDrivenSegmentationPipleline
from .movie_scene_segmentation_pipeline import MovieSceneSegmentationPipeline

else:
_import_structure = {
'action_recognition_pipeline': ['ActionRecognitionPipeline'],
@@ -96,6 +96,7 @@ else:
'tinynas_classification_pipeline': ['TinynasClassificationPipeline'],
'video_category_pipeline': ['VideoCategoryPipeline'],
'virtual_try_on_pipeline': ['VirtualTryonPipeline'],
'shop_segmentation_pipleline': ['ShopSegmentationPipeline'],
'easycv_pipeline': [
'EasyCVDetectionPipeline', 'EasyCVSegmentationPipeline',
'Face2DKeypointsPipeline'


+ 51
- 0
modelscope/pipelines/cv/shop_segmentation_pipleline.py View File

@@ -0,0 +1,51 @@
from typing import Any, Dict

from modelscope.metainfo import Pipelines
from modelscope.outputs import OutputKeys
from modelscope.pipelines.base import Input, Pipeline
from modelscope.pipelines.builder import PIPELINES
from modelscope.preprocessors import LoadImage
from modelscope.utils.constant import Tasks


@PIPELINES.register_module(
Tasks.shop_segmentation, module_name=Pipelines.shop_segmentation)
class ShopSegmentationPipeline(Pipeline):

def __init__(self, model: str, **kwargs):
"""
model: model id on modelscope hub.
"""
super().__init__(model=model, auto_collate=False, **kwargs)

def preprocess(self, input: Input) -> Dict[str, Any]:
img = LoadImage.convert_to_ndarray(input)
img_tensor, ori_h, ori_w, crop_h, crop_w = self.model.preprocess(img)
result = {
'img': img_tensor,
'ori_h': ori_h,
'ori_w': ori_w,
'crop_h': crop_h,
'crop_w': crop_w
}
return result

def forward(self, input: Dict[str, Any]) -> Dict[str, Any]:

outputs = self.model.inference(input['img'])
result = {
'data': outputs,
'ori_h': input['ori_h'],
'ori_w': input['ori_w'],
'crop_h': input['crop_h'],
'crop_w': input['crop_w'],
}
return result

def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]:

data = self.model.postprocess(inputs['data'], inputs['crop_h'],
inputs['crop_w'], inputs['ori_h'],
inputs['ori_w'])
outputs = {OutputKeys.MASKS: data}
return outputs

+ 1
- 0
modelscope/utils/constant.py View File

@@ -38,6 +38,7 @@ class CVTasks(object):
image_segmentation = 'image-segmentation'
portrait_matting = 'portrait-matting'
text_driven_segmentation = 'text-driven-segmentation'
shop_segmentation = 'shop-segmentation'

# image editing
skin_retouching = 'skin-retouching'


+ 24
- 0
tests/pipelines/test_shop_segmentation.py View File

@@ -0,0 +1,24 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest

from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level


class ShopSegmentationTest(unittest.TestCase):

@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_shop_segmentation(self):
input_location = 'data/test/images/shop_segmentation.jpg'
model_id = 'damo/cv_vitb16_segmentation_shop-seg'
shop_seg = pipeline(Tasks.shop_segmentation, model=model_id)
result = shop_seg(input_location)
import cv2
# result[OutputKeys.MASKS] is segment map result,other keys are not used
cv2.imwrite(input_location + '_shopseg.jpg', result[OutputKeys.MASKS])


if __name__ == '__main__':
unittest.main()

Loading…
Cancel
Save