|
|
|
@@ -3,7 +3,8 @@ import unittest |
|
|
|
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download |
|
|
|
from modelscope.models import Model |
|
|
|
from modelscope.models.nlp import SbertForTokenClassification |
|
|
|
from modelscope.models.nlp import (LSTMCRFForWordSegmentation, |
|
|
|
SbertForTokenClassification) |
|
|
|
from modelscope.pipelines import pipeline |
|
|
|
from modelscope.pipelines.nlp import WordSegmentationPipeline |
|
|
|
from modelscope.preprocessors import \ |
|
|
|
@@ -19,8 +20,12 @@ class WordSegmentationTest(unittest.TestCase, DemoCompatibilityCheck): |
|
|
|
def setUp(self) -> None: |
|
|
|
self.task = Tasks.word_segmentation |
|
|
|
self.model_id = 'damo/nlp_structbert_word-segmentation_chinese-base' |
|
|
|
self.ecom_model_id = 'damo/nlp_structbert_word-segmentation_chinese-base-ecommerce' |
|
|
|
self.lstmcrf_news_model_id = 'damo/nlp_lstmcrf_word-segmentation_chinese-news' |
|
|
|
self.lstmcrf_ecom_model_id = 'damo/nlp_lstmcrf_word-segmentation_chinese-ecommerce' |
|
|
|
|
|
|
|
sentence = '今天天气不错,适合出去游玩' |
|
|
|
sentence_ecom = '东阳草肌醇复合物' |
|
|
|
sentence_eng = 'I am a program.' |
|
|
|
regress_tool = MsRegressTool(baseline=False) |
|
|
|
|
|
|
|
@@ -36,7 +41,43 @@ class WordSegmentationTest(unittest.TestCase, DemoCompatibilityCheck): |
|
|
|
f'pipeline1:{pipeline1(input=self.sentence)}') |
|
|
|
print(f'pipeline2: {pipeline2(input=self.sentence)}') |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') |
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') |
|
|
|
def test_run_ecom_by_direct_model_download(self): |
|
|
|
cache_path = snapshot_download(self.ecom_model_id) |
|
|
|
tokenizer = TokenClassificationTransformersPreprocessor(cache_path) |
|
|
|
model = SbertForTokenClassification.from_pretrained(cache_path) |
|
|
|
pipeline1 = WordSegmentationPipeline(model, preprocessor=tokenizer) |
|
|
|
pipeline2 = pipeline( |
|
|
|
Tasks.word_segmentation, model=model, preprocessor=tokenizer) |
|
|
|
print(f'sentence: {self.sentence_ecom}\n' |
|
|
|
f'pipeline1:{pipeline1(input=self.sentence_ecom)}') |
|
|
|
print(f'pipeline2: {pipeline2(input=self.sentence_ecom)}') |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') |
|
|
|
def test_run_lstmcrf_news_by_direct_model_download(self): |
|
|
|
cache_path = snapshot_download(self.lstmcrf_news_model_id) |
|
|
|
tokenizer = TokenClassificationTransformersPreprocessor(cache_path) |
|
|
|
model = LSTMCRFForWordSegmentation(cache_path, tokenizer=tokenizer) |
|
|
|
pipeline1 = WordSegmentationPipeline(model, preprocessor=tokenizer) |
|
|
|
pipeline2 = pipeline( |
|
|
|
Tasks.word_segmentation, model=model, preprocessor=tokenizer) |
|
|
|
print(f'sentence: {self.sentence}\n' |
|
|
|
f'pipeline1:{pipeline1(input=self.sentence)}') |
|
|
|
print(f'pipeline2: {pipeline2(input=self.sentence)}') |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') |
|
|
|
def test_run_lstmcrf_ecom_by_direct_model_download(self): |
|
|
|
cache_path = snapshot_download(self.lstmcrf_ecom_model_id) |
|
|
|
tokenizer = TokenClassificationTransformersPreprocessor(cache_path) |
|
|
|
model = LSTMCRFForWordSegmentation(cache_path, tokenizer=tokenizer) |
|
|
|
pipeline1 = WordSegmentationPipeline(model, preprocessor=tokenizer) |
|
|
|
pipeline2 = pipeline( |
|
|
|
Tasks.word_segmentation, model=model, preprocessor=tokenizer) |
|
|
|
print(f'sentence: {self.sentence_ecom}\n' |
|
|
|
f'pipeline1:{pipeline1(input=self.sentence_ecom)}') |
|
|
|
print(f'pipeline2: {pipeline2(input=self.sentence_ecom)}') |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') |
|
|
|
def test_run_with_model_from_modelhub(self): |
|
|
|
model = Model.from_pretrained(self.model_id) |
|
|
|
tokenizer = TokenClassificationTransformersPreprocessor( |
|
|
|
@@ -46,6 +87,33 @@ class WordSegmentationTest(unittest.TestCase, DemoCompatibilityCheck): |
|
|
|
print(pipeline_ins(input=self.sentence)) |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') |
|
|
|
def test_run_ecom_with_model_from_modelhub(self): |
|
|
|
model = Model.from_pretrained(self.ecom_model_id) |
|
|
|
tokenizer = TokenClassificationTransformersPreprocessor( |
|
|
|
model.model_dir) |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.word_segmentation, model=model, preprocessor=tokenizer) |
|
|
|
print(pipeline_ins(input=self.sentence_ecom)) |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') |
|
|
|
def test_run_lstmcrf_news_with_model_from_modelhub(self): |
|
|
|
model = Model.from_pretrained(self.lstmcrf_news_model_id) |
|
|
|
tokenizer = TokenClassificationTransformersPreprocessor( |
|
|
|
model.model_dir) |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.word_segmentation, model=model, preprocessor=tokenizer) |
|
|
|
print(pipeline_ins(input=self.sentence)) |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') |
|
|
|
def test_run_lstmcrf_ecom_with_model_from_modelhub(self): |
|
|
|
model = Model.from_pretrained(self.lstmcrf_ecom_model_id) |
|
|
|
tokenizer = TokenClassificationTransformersPreprocessor( |
|
|
|
model.model_dir) |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.word_segmentation, model=model, preprocessor=tokenizer) |
|
|
|
print(pipeline_ins(input=self.sentence_ecom)) |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') |
|
|
|
def test_run_with_model_name(self): |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.word_segmentation, model=self.model_id) |
|
|
|
@@ -56,6 +124,24 @@ class WordSegmentationTest(unittest.TestCase, DemoCompatibilityCheck): |
|
|
|
print(pipeline_ins(input=self.sentence)) |
|
|
|
print(pipeline_ins(input=self.sentence_eng)) |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') |
|
|
|
def test_run_ecom_with_model_name(self): |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.word_segmentation, model=self.ecom_model_id) |
|
|
|
print(pipeline_ins(input=self.sentence_ecom)) |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') |
|
|
|
def test_run_lstmcrf_news_with_model_name(self): |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.word_segmentation, model=self.lstmcrf_news_model_id) |
|
|
|
print(pipeline_ins(input=self.sentence)) |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') |
|
|
|
def test_run_lstmcrf_ecom_with_model_name(self): |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.word_segmentation, model=self.lstmcrf_ecom_model_id) |
|
|
|
print(pipeline_ins(input=self.sentence_ecom)) |
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') |
|
|
|
def test_run_with_model_name_batch(self): |
|
|
|
pipeline_ins = pipeline( |
|
|
|
|