You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_image_instance_segmentation_trainer.py 4.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. import zipfile
  7. from functools import partial
  8. from modelscope.hub.snapshot_download import snapshot_download
  9. from modelscope.metainfo import Trainers
  10. from modelscope.models.cv.image_instance_segmentation import (
  11. CascadeMaskRCNNSwinModel, ImageInstanceSegmentationCocoDataset)
  12. from modelscope.trainers import build_trainer
  13. from modelscope.utils.config import Config
  14. from modelscope.utils.constant import ModelFile
  15. from modelscope.utils.test_utils import test_level
  16. class TestImageInstanceSegmentationTrainer(unittest.TestCase):
  17. model_id = 'damo/cv_swin-b_image-instance-segmentation_coco'
  18. def setUp(self):
  19. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  20. cache_path = snapshot_download(self.model_id)
  21. config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
  22. cfg = Config.from_file(config_path)
  23. data_root = cfg.dataset.data_root
  24. classes = tuple(cfg.dataset.classes)
  25. max_epochs = cfg.train.max_epochs
  26. samples_per_gpu = cfg.train.dataloader.batch_size_per_gpu
  27. if data_root is None:
  28. # use default toy data
  29. dataset_path = os.path.join(cache_path, 'toydata.zip')
  30. with zipfile.ZipFile(dataset_path, 'r') as zipf:
  31. zipf.extractall(cache_path)
  32. data_root = cache_path + '/toydata/'
  33. classes = ('Cat', 'Dog')
  34. self.train_dataset = ImageInstanceSegmentationCocoDataset(
  35. data_root + 'annotations/instances_train.json',
  36. classes=classes,
  37. data_root=data_root,
  38. img_prefix=data_root + 'images/train/',
  39. seg_prefix=None,
  40. test_mode=False)
  41. self.eval_dataset = ImageInstanceSegmentationCocoDataset(
  42. data_root + 'annotations/instances_val.json',
  43. classes=classes,
  44. data_root=data_root,
  45. img_prefix=data_root + 'images/val/',
  46. seg_prefix=None,
  47. test_mode=True)
  48. from mmcv.parallel import collate
  49. self.collate_fn = partial(collate, samples_per_gpu=samples_per_gpu)
  50. self.max_epochs = max_epochs
  51. self.tmp_dir = tempfile.TemporaryDirectory().name
  52. if not os.path.exists(self.tmp_dir):
  53. os.makedirs(self.tmp_dir)
  54. def tearDown(self):
  55. shutil.rmtree(self.tmp_dir)
  56. super().tearDown()
  57. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  58. def test_trainer(self):
  59. kwargs = dict(
  60. model=self.model_id,
  61. data_collator=self.collate_fn,
  62. train_dataset=self.train_dataset,
  63. eval_dataset=self.eval_dataset,
  64. work_dir=self.tmp_dir)
  65. trainer = build_trainer(
  66. name=Trainers.image_instance_segmentation, default_args=kwargs)
  67. trainer.train()
  68. results_files = os.listdir(self.tmp_dir)
  69. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  70. for i in range(self.max_epochs):
  71. self.assertIn(f'epoch_{i+1}.pth', results_files)
  72. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  73. def test_trainer_with_model_and_args(self):
  74. tmp_dir = tempfile.TemporaryDirectory().name
  75. if not os.path.exists(tmp_dir):
  76. os.makedirs(tmp_dir)
  77. cache_path = snapshot_download(self.model_id)
  78. model = CascadeMaskRCNNSwinModel.from_pretrained(cache_path)
  79. kwargs = dict(
  80. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  81. model=model,
  82. data_collator=self.collate_fn,
  83. train_dataset=self.train_dataset,
  84. eval_dataset=self.eval_dataset,
  85. work_dir=self.tmp_dir)
  86. trainer = build_trainer(
  87. name=Trainers.image_instance_segmentation, default_args=kwargs)
  88. trainer.train()
  89. results_files = os.listdir(self.tmp_dir)
  90. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  91. for i in range(self.max_epochs):
  92. self.assertIn(f'epoch_{i+1}.pth', results_files)
  93. if __name__ == '__main__':
  94. unittest.main()