''' 在训练环境中,代码会自动放在/tmp/code目录下,上传的数据集会自动放在/tmp/dataset目录下,模型下载路径默认在/tmp/output下,请将模型输出位置指定到/tmp/model, 启智平台界面会提供/tmp/output目录下的文件下载。 ''' from model import Model import numpy as np import torch from torchvision.datasets import mnist from torch.nn import CrossEntropyLoss from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.transforms import ToTensor import argparse # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') #数据集位置放在/tmp/dataset下 parser.add_argument('--traindata', default="/tmp/dataset/train" ,help='path to train dataset') parser.add_argument('--testdata', default="/tmp/dataset/test" ,help='path to test dataset') parser.add_argument('--epoch_size', type=int, default=1, help='how much epoch to train') parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') if __name__ == '__main__': args = parser.parse_args() #日志输出 print('cuda is available:{}'.format(torch.cuda.is_available())) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") batch_size = args.batch_size train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False) test_dataset = mnist.MNIST(root=args.testdata, train=False, transform=ToTensor(),download=False) train_loader = DataLoader(train_dataset, batch_size=batch_size) test_loader = DataLoader(test_dataset, batch_size=batch_size) model = Model().to(device) sgd = SGD(model.parameters(), lr=1e-1) cost = CrossEntropyLoss() epoch = args.epoch_size #日志输出 print('epoch_size is:{}'.format(epoch)) for _epoch in range(epoch): print('the {} epoch_size begin'.format(_epoch + 1)) model.train() for idx, (train_x, train_label) in enumerate(train_loader): train_x = train_x.to(device) train_label = train_label.to(device) label_np = np.zeros((train_label.shape[0], 10)) sgd.zero_grad() predict_y = model(train_x.float()) loss = cost(predict_y, train_label.long()) if idx % 10 == 0: print('idx: {}, loss: {}'.format(idx, loss.sum().item())) loss.backward() sgd.step() correct = 0 _sum = 0 model.eval() for idx, (test_x, test_label) in enumerate(test_loader): test_x = test_x test_label = test_label predict_y = model(test_x.to(device).float()).detach() predict_ys = np.argmax(predict_y.cpu(), axis=-1) label_np = test_label.numpy() _ = predict_ys == test_label correct += np.sum(_.numpy(), axis=-1) _sum += _.shape[0] #日志输出 print('accuracy: {:.2f}'.format(correct / _sum)) #模型输出位置放在/tmp/output下 torch.save(model, '/tmp/output/mnist_epoch{}_{:.2f}.pkl'.format(_epoch+1, correct / _sum))