""" ######################## inference lenet example ######################## inference lenet according to model file """ """ ######################## 推理环境使用说明 ######################## 1、在推理环境中,需要将数据集从obs拷贝到推理镜像中,推理完以后,需要将输出的结果拷贝到obs. (1)将数据集从obs拷贝到推理镜像中: obs_data_url = args.data_url args.data_url = '/home/work/user-job-dir/data/' if not os.path.exists(args.data_url): os.mkdir(args.data_url) try: mox.file.copy_parallel(obs_data_url, args.data_url) print("Successfully Download {} to {}".format(obs_data_url, args.data_url)) except Exception as e: print('moxing download {} to {} failed: '.format( obs_data_url, args.data_url) + str(e)) (2)将模型文件从obs拷贝到推理镜像中: obs_ckpt_url = args.ckpt_url args.ckpt_url = '/home/work/user-job-dir/checkpoint.ckpt' try: mox.file.copy(obs_ckpt_url, args.ckpt_url) print("Successfully Download {} to {}".format(obs_ckpt_url, args.ckpt_url)) except Exception as e: print('moxing download {} to {} failed: '.format( obs_ckpt_url, args.ckpt_url) + str(e)) (3)将输出的结果拷贝回obs: obs_result_url = args.result_url args.result_url = '/home/work/user-job-dir/result/' if not os.path.exists(args.result_url): os.mkdir(args.result_url) try: mox.file.copy_parallel(args.result_url, obs_result_url) print("Successfully Upload {} to {}".format(args.result_url, obs_result_url)) except Exception as e: print('moxing upload {} to {} failed: '.format(args.result_url, obs_result_url) + str(e)) 详细代码可参考以下示例代码: """ import os import argparse import moxing as mox import mindspore.nn as nn from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore import Tensor import numpy as np from glob import glob from dataset import create_dataset from config import mnist_cfg as cfg from lenet import LeNet5 if __name__ == "__main__": parser = argparse.ArgumentParser(description='MindSpore Lenet Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_url', type=str, default="./Data", help='path where the dataset is saved') parser.add_argument('--ckpt_url', help='model to save/load', default='./ckpt_url') parser.add_argument('--result_url', help='result folder to save/load', default='./result') args = parser.parse_args() #将数据集从obs拷贝到推理镜像中: obs_data_url = args.data_url args.data_url = '/home/work/user-job-dir/data/' if not os.path.exists(args.data_url): os.mkdir(args.data_url) try: mox.file.copy_parallel(obs_data_url, args.data_url) print("Successfully Download {} to {}".format(obs_data_url, args.data_url)) except Exception as e: print('moxing download {} to {} failed: '.format( obs_data_url, args.data_url) + str(e)) #对文件夹进行操作,请使用mox.file.copy_parallel。如果拷贝一个文件。请使用mox.file.copy对文件操作,本次操作是对文件进行操作 #将模型文件从obs拷贝到推理镜像中: obs_ckpt_url = args.ckpt_url args.ckpt_url = '/home/work/user-job-dir/checkpoint.ckpt' try: mox.file.copy(obs_ckpt_url, args.ckpt_url) print("Successfully Download {} to {}".format(obs_ckpt_url, args.ckpt_url)) except Exception as e: print('moxing download {} to {} failed: '.format( obs_ckpt_url, args.ckpt_url) + str(e)) #设置输出路径result_url obs_result_url = args.result_url args.result_url = '/home/work/user-job-dir/result/' if not os.path.exists(args.result_url): os.mkdir(args.result_url) args.dataset_path = args.data_url args.save_checkpoint_path = args.ckpt_url context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) network = LeNet5(cfg.num_classes) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") repeat_size = cfg.epoch_size net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) print("============== Starting Testing ==============") args.load_ckpt_url = os.path.join(args.save_checkpoint_path) print("args.load_ckpt_url is:{}", args.load_ckpt_url ) param_dict = load_checkpoint(args.load_ckpt_url ) load_param_into_net(network, param_dict) # 定义测试数据集,batch_size设置为1,则取出一张图片 ds_test = create_dataset(os.path.join(args.dataset_path, "test"), batch_size=1).create_dict_iterator() data = next(ds_test) # images为测试图片,labels为测试图片的实际分类 images = data["image"].asnumpy() labels = data["label"].asnumpy() print('Tensor:', Tensor(data['image'])) # 使用函数model.predict预测image对应分类 output = model.predict(Tensor(data['image'])) predicted = np.argmax(output.asnumpy(), axis=1) pred = np.argmax(output.asnumpy(), axis=1) print('predicted:', predicted) print('pred:', pred) # 输出预测分类与实际分类,并输出到result_url print(f'Predicted: "{predicted[0]}", Actual: "{labels[0]}"') filename = 'result.txt' file_path = os.path.join(args.result_url, filename) with open(file_path, 'a+') as file: file.write(" {}: {:.2f} \n".format("Predicted", predicted[0])) # Upload results to obs ######################## 将输出的结果拷贝到obs(固定写法) ######################## # 把推理后的结果从本地的运行环境拷贝回obs,在启智平台相对应的推理任务中会提供下载 try: mox.file.copy_parallel(args.result_url, obs_result_url) print("Successfully Upload {} to {}".format(args.result_url, obs_result_url)) except Exception as e: print('moxing upload {} to {} failed: '.format(args.result_url, obs_result_url) + str(e)) ######################## 将输出的模型拷贝到obs ########################