""" Produce the dataset: 与单机不同的是,在数据集接口需要传入num_shards和shard_id参数,分别对应卡的数量和逻辑序号,建议通过HCCL接口获取: get_rank:获取当前设备在集群中的ID。 get_group_size:获取集群数量。 """ import mindspore.dataset as ds import mindspore.dataset.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C from mindspore.dataset.vision import Inter from mindspore.common import dtype as mstype from mindspore.communication.management import init, get_rank, get_group_size def create_dataset_parallel(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1, shard_id=0, num_shards=8): """ create dataset for train or test """ resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 rescale_nml = 1 / 0.3081 shift_nml = -1 * 0.1307 / 0.3081 # get shard_id and num_shards.Get the ID of the current device in the cluster And Get the number of clusters. shard_id = get_rank() num_shards = get_group_size() # define dataset mnist_ds = ds.MnistDataset(data_path, num_shards=num_shards, shard_id=shard_id) # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds