""" ######################## multi-dataset train lenet example ######################## This example is a multi-dataset training tutorial. If it is a single dataset, please refer to the single dataset training tutorial train.py. This example cannot be used for a single dataset! """ """ ######################## Instructions for using the training environment ######################## 1、(1)The structure of the dataset uploaded for multi-dataset training in this example MNISTData.zip ├── test │ ├── t10k-images-idx3-ubyte │ └── t10k-labels-idx1-ubyte └── train ├── train-images-idx3-ubyte └── train-labels-idx1-ubyte checkpoint_lenet-1_1875.zip ├── checkpoint_lenet-1_1875.ckpt (2)The dataset structure in the training image for multiple datasets in this example workroot ├── MNISTData | ├── test | └── train └── checkpoint_lenet-1_1875 ├── checkpoint_lenet-1_1875.ckpt 2、Multi-dataset training requires predefined functions (1)Defines whether the task is a training environment or a debugging environment. def WorkEnvironment(environment): if environment == 'train': workroot = '/home/work/user-job-dir' #The training task uses this parameter to represent the local path of the training image elif environment == 'debug': workroot = '/home/ma-user/work' #The debug task uses this parameter to represent the local path of the debug image print('current work mode:' + environment + ', workroot:' + workroot) return workroot (2)Copy multiple datasets from obs to training image def MultiObsToEnv(multi_data_url, workroot): multi_data_json = json.loads(multi_data_url) #Parse multi_data_url for i in range(len(multi_data_json)): path = workroot + "/" + multi_data_json[i]["dataset_name"] if not os.path.exists(path): os.makedirs(path) try: mox.file.copy_parallel(multi_data_json[i]["dataset_url"], path) print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"], path)) except Exception as e: print('moxing download {} to {} failed: '.format( multi_data_json[i]["dataset_url"], path) + str(e)) return ***The input and output of the MultiObsToEnv function in this example: Input for multi_data_url: [ { "dataset_url": "s3://test-opendata/attachment/e/a/eae3a316-42d6-4a43-a484-1fa573eab388e ae3a316-42d6-4a43-a484-1fa573eab388/", #obs path of the dataset "dataset_name": "MNIST_Data" #the name of the dataset }, { "dataset_url": "s3://test-opendata/attachment/2/c/2c59be66-64ec-41ca-b311-f51a486eabf82c 59be66-64ec-41ca-b311-f51a486eabf8/", "dataset_name": "checkpoint_lenet-1_1875" } ] Purpose of multi_data_url: The purpose of the MultiObsToEnv function is to copy multiple datasets from obs to the training image and build the dataset path in the training image. For example, the path of the MNIST_Data dataset in this example is /home/work/user-job-dir/MNISTData, The path to the checkpoint_lenet-1_1875 dataset is /home/work/user-job-dir/checkpoint_lenet-1_1875 (3)Copy the output model to obs. def EnvToObs(train_dir, obs_train_url): try: mox.file.copy_parallel(train_dir, obs_train_url) print("Successfully Upload {} to {}".format(train_dir, obs_train_url)) except Exception as e: print('moxing upload {} to {} failed: '.format(train_dir, obs_train_url) + str(e)) return 3、4 parameters need to be defined --data_url is the first dataset you selected on the Qizhi platform --multi_data_url is the multi-dataset you selected on the Qizhi platform --data_url,--multi_data_url,--train_url,--device_target,These 4 parameters must be defined first in a multi-dataset task, otherwise an error will be reported. There is no need to add these parameters to the running parameters of the Qizhi platform, because they are predefined in the background, you only need to define them in your code 4、How the dataset is used Multi-datasets use multi_data_url as input, workroot + dataset name + file or folder name in the dataset as the calling path of the dataset in the training image. For example, the calling path of the train folder in the MNIST_Data dataset in this example is workroot + "/MNIST_Data" +"/train" For details, please refer to the following sample code. """ import os import argparse import moxing as mox from config import mnist_cfg as cfg from dataset import create_dataset from lenet import LeNet5 import json import mindspore.nn as nn from mindspore import context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore.common import set_seed from mindspore import load_checkpoint, load_param_into_net ### Defines whether the task is a training environment or a debugging environment ### def WorkEnvironment(environment): if environment == 'train': workroot = '/home/work/user-job-dir' elif environment == 'debug': workroot = '/home/ma-user/work' print('current work mode:' + environment + ', workroot:' + workroot) return workroot ### Copy multiple datasets from obs to training image ### def MultiObsToEnv(multi_data_url, workroot): multi_data_json = json.loads(multi_data_url) for i in range(len(multi_data_json)): path = workroot + "/" + multi_data_json[i]["dataset_name"] if not os.path.exists(path): os.makedirs(path) try: mox.file.copy_parallel(multi_data_json[i]["dataset_url"], path) print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"], path)) except Exception as e: print('moxing download {} to {} failed: '.format( multi_data_json[i]["dataset_url"], path) + str(e)) return ### Copy the output model to obs ### def EnvToObs(train_dir, obs_train_url): try: mox.file.copy_parallel(train_dir, obs_train_url) print("Successfully Upload {} to {}".format(train_dir, obs_train_url)) except Exception as e: print('moxing upload {} to {} failed: '.format(train_dir, obs_train_url) + str(e)) return parser = argparse.ArgumentParser(description='MindSpore Lenet Example') ### --data_url,--multi_data_url,--train_url,--device_target,These 4 parameters must be defined first in a multi-dataset, ### otherwise an error will be reported. ### There is no need to add these parameters to the running parameters of the Qizhi platform, ### because they are predefined in the background, you only need to define them in your code. parser.add_argument('--data_url', help='path to training/inference dataset folder', default= WorkEnvironment('train') + '/data/') parser.add_argument('--multi_data_url', help='path to multi dataset', default= WorkEnvironment('train')) parser.add_argument('--train_url', help='model folder to save/load', default= WorkEnvironment('train') + '/model/') parser.add_argument( '--device_target', type=str, default="Ascend", choices=['Ascend', 'CPU'], help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU') parser.add_argument('--epoch_size', type=int, default=5, help='Training epochs.') if __name__ == "__main__": args, unknown = parser.parse_known_args() # After defining the training environment, first execute the WorkEnv function and the GetMultiDataPath function to # copy multiple datasets from obs to the training image environment = 'train' workroot = WorkEnvironment(environment) MultiObsToEnv(args.multi_data_url, workroot) ### Define the output path in the training image train_dir = workroot + '/model' if not os.path.exists(train_dir): os.makedirs(train_dir) context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) #The dataset path is used here:workroot + "/MNIST_Data" +"/train" "" ds_train = create_dataset(os.path.join(workroot + "/MNISTData", "train"), cfg.batch_size) if ds_train.get_dataset_size() == 0: raise ValueError( "Please check dataset size > 0 and batch_size <= dataset size") network = LeNet5(cfg.num_classes) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) ### Load the trained model:workroot + "/checkpoint_lenet-1_1875"+"/checkpoint_lenet-1_1875.ckpt" load_param_into_net(network, load_checkpoint(os.path.join(workroot + "/checkpoint_lenet-1_1875", "checkpoint_lenet-1_1875.ckpt"))) if args.device_target != "Ascend": model = Model(network,net_loss,net_opt,metrics={"accuracy": Accuracy()}) else: model = Model(network, net_loss,net_opt,metrics={"accuracy": Accuracy()},amp_level="O2") config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory=train_dir, config=config_ck) print("============== Starting Training ==============") epoch_size = cfg['epoch_size'] if (args.epoch_size): epoch_size = args.epoch_size print('epoch_size is: ', epoch_size) model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()]) ###Copy the trained model data from the local running environment back to obs, ###and download it in the training task corresponding to the Qizhi platform EnvToObs(train_dir, args.train_url)