#!/usr/bin/python #coding=utf-8 ''' If there are Chinese comments in the code,please add at the beginning: #!/usr/bin/python #coding=utf-8 Due to the adaptability of a100, before using the training environment, please use the recommended image of the platform with cuda 11.Then adjust the code and submit the image. The image of this example is: dockerhub.pcl.ac.cn:5000/user-images/openi:cuda111_python37_pytorch191 In the training environment, the uploaded dataset will be automatically placed in the /dataset directory. If it is a single dataset: if MnistDataset_torch.zip is selected,Then the dataset directory is /dataset/train, /dataset/test; If it is a multiple dataset: If MnistDataset_torch.zip and checkpoint_epoch1_0.73.zip are selected, the dataset directory is /dataset/MnistDataset_torch/train, /dataset/MnistDataset_torch/test and /dataset/checkpoint_epoch1_0.73/mnist_epoch1_0.73.pkl The model download path is under /model by default. Please specify the model output location to /model, and the Qizhi platform will provide file downloads under the /model directory. ''' from model import Model import numpy as np import torch from torchvision.datasets import mnist from torch.nn import CrossEntropyLoss from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.transforms import ToTensor import argparse import datetime # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') #The dataset location is placed under /dataset parser.add_argument('--traindata', default="/dataset/train" ,help='path to train dataset') parser.add_argument('--testdata', default="/dataset/test" ,help='path to test dataset') parser.add_argument('--epoch_size', type=int, default=1, help='how much epoch to train') parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') def gettime(): timestr = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') return timestr if __name__ == '__main__': args, unknown = parser.parse_known_args() #log output print(gettime(), 'cuda is available:{}'.format(torch.cuda.is_available())) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") batch_size = args.batch_size train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False) test_dataset = mnist.MNIST(root=args.testdata, train=False, transform=ToTensor(),download=False) train_loader = DataLoader(train_dataset, batch_size=batch_size) test_loader = DataLoader(test_dataset, batch_size=batch_size) model = Model().to(device) sgd = SGD(model.parameters(), lr=1e-1) cost = CrossEntropyLoss() epoch = args.epoch_size print(gettime(), 'epoch_size is:{}'.format(epoch)) for _epoch in range(epoch): print(gettime(), 'the {} epoch_size begin'.format(_epoch + 1)) model.train() for idx, (train_x, train_label) in enumerate(train_loader): train_x = train_x.to(device) train_label = train_label.to(device) label_np = np.zeros((train_label.shape[0], 10)) sgd.zero_grad() predict_y = model(train_x.float()) loss = cost(predict_y, train_label.long()) print(gettime(), 'idx: {}, loss: {}'.format(idx, loss.sum().item())) if idx % 10 == 0: print("------------------") loss.backward() sgd.step() correct = 0 _sum = 0 model.eval() for idx, (test_x, test_label) in enumerate(test_loader): test_x = test_x test_label = test_label predict_y = model(test_x.to(device).float()).detach() predict_ys = np.argmax(predict_y.cpu(), axis=-1) label_np = test_label.numpy() _ = predict_ys == test_label correct += np.sum(_.numpy(), axis=-1) _sum += _.shape[0] print(gettime(), 'accuracy: {:.2f}'.format(correct / _sum)) #The model output location is placed under /model torch.save(model, '/model/mnist_epoch{}_{:.2f}.pkl'.format(_epoch+1, correct / _sum))