#!/usr/bin/python #coding=utf-8 ''' If there are Chinese comments in the code,please add at the beginning: #!/usr/bin/python #coding=utf-8 In the training environment, the code will be automatically placed in the /tmp/code directory, the uploaded dataset will be automatically placed in the /tmp/dataset directory Note: the paths are different when selecting a single dataset and multiple datasets. (1)If it is a single dataset: if MnistDataset_torch.zip is selected, the dataset directory is /tmp/dataset/train, /dataset/test; The dataset structure of the single dataset in the training image in this example: tmp ├──dataset ├── test └── train If multiple datasets are selected, such as MnistDataset_torch.zip and checkpoint_epoch1_0.73.zip, the dataset directory is /tmp/dataset/MnistDataset_torch/train, /tmp/dataset/MnistDataset_torch/test and /tmp/dataset/checkpoint_epoch1_0.73/mnist_epoch1_0.73.pkl The dataset structure in the training image for multiple datasets in this example: tmp ├──dataset ├── MnistDataset_torch | ├── test | └── train └── checkpoint_epoch1_0.73 ├── mnist_epoch1_0.73.pkl the model download path is under /tmp/output by default, please specify the model output location to /tmp/output, qizhi platform will provide file downloads under the /tmp/output directory. In addition, if you want to get the model file after each training, you can call the uploader_for_gpu tool, which is written as: import os os.system("cd /tmp/script_for_grampus/ &&./uploader_for_gpu " + "/tmp/output/") ''' from model import Model import numpy as np import torch from torchvision.datasets import mnist from torch.nn import CrossEntropyLoss from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.transforms import ToTensor import argparse import os # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') #The dataset location is placed under /dataset parser.add_argument('--traindata', default="/tmp/dataset/train" ,help='path to train dataset') parser.add_argument('--testdata', default="/tmp/dataset/test" ,help='path to test dataset') parser.add_argument('--epoch_size', type=int, default=1, help='how much epoch to train') parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') if __name__ == '__main__': args, unknown = parser.parse_known_args() #log output print('cuda is available:{}'.format(torch.cuda.is_available())) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") batch_size = args.batch_size train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False) test_dataset = mnist.MNIST(root=args.testdata, train=False, transform=ToTensor(),download=False) train_loader = DataLoader(train_dataset, batch_size=batch_size) test_loader = DataLoader(test_dataset, batch_size=batch_size) model = Model().to(device) sgd = SGD(model.parameters(), lr=1e-1) cost = CrossEntropyLoss() epoch = args.epoch_size print('epoch_size is:{}'.format(epoch)) for _epoch in range(epoch): print('the {} epoch_size begin'.format(_epoch + 1)) model.train() for idx, (train_x, train_label) in enumerate(train_loader): train_x = train_x.to(device) train_label = train_label.to(device) label_np = np.zeros((train_label.shape[0], 10)) sgd.zero_grad() predict_y = model(train_x.float()) loss = cost(predict_y, train_label.long()) if idx % 10 == 0: print('idx: {}, loss: {}'.format(idx, loss.sum().item())) loss.backward() sgd.step() correct = 0 _sum = 0 model.eval() for idx, (test_x, test_label) in enumerate(test_loader): test_x = test_x test_label = test_label predict_y = model(test_x.to(device).float()).detach() predict_ys = np.argmax(predict_y.cpu(), axis=-1) label_np = test_label.numpy() _ = predict_ys == test_label correct += np.sum(_.numpy(), axis=-1) _sum += _.shape[0] print('accuracy: {:.2f}'.format(correct / _sum)) #The model output location is placed under /model state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch} torch.save(state, '/tmp/output/mnist_epoch{}_{:.2f}.pkl'.format(_epoch+1, correct / _sum)) #After calling uploader_for_gpu, after each epoch training, the result file under /tmp/output will be sent back to Qizhi os.system("cd /tmp/script_for_grampus/ &&./uploader_for_gpu " + "/tmp/output/")