""" ######################## multi-dataset inference lenet example ######################## This example is a single-dataset inference tutorial. ######################## Instructions for using the inference environment ######################## 1、Inference task requires predefined functions (1)Copy multi dataset from obs to inference image. function MultiObsToEnv(obs_data_url, data_dir) (2)Copy ckpt file from obs to inference image. function ObsUrlToEnv(obs_ckpt_url, ckpt_url) (3)Copy the output result to obs. function EnvToObs(train_dir, obs_train_url) 3、5 parameters need to be defined. --data_url is the first dataset you selected on the Qizhi platform --multi_data_url is the multi dataset you selected on the Qizhi platform --ckpt_url is the weight file you choose on the Qizhi platform --result_url is the output --data_url,--multi_data_url,--ckpt_url,--result_url,--device_target,These 5 parameters must be defined first in a single dataset, otherwise an error will be reported. There is no need to add these parameters to the running parameters of the Qizhi platform, because they are predefined in the background, you only need to define them in your code. 4、How the dataset is used Multi-datasets use multi_data_url as input, data_dir + dataset name + file or folder name in the dataset as the calling path of the dataset in the inference image. For example, the calling path of the test folder in the MNIST_Data dataset in this example is data_dir + "/MNIST_Data" +"/test" For details, please refer to the following sample code. """ import os import argparse import moxing as mox import mindspore.nn as nn from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore import Tensor import numpy as np from glob import glob from dataset import create_dataset from config import mnist_cfg as cfg from lenet import LeNet5 import json ### Copy multiple datasets from obs to inference image ### def MultiObsToEnv(multi_data_url, data_dir): #--multi_data_url is json data, need to do json parsing for multi_data_url multi_data_json = json.loads(multi_data_url) for i in range(len(multi_data_json)): path = data_dir + "/" + multi_data_json[i]["dataset_name"] if not os.path.exists(path): os.makedirs(path) try: mox.file.copy_parallel(multi_data_json[i]["dataset_url"], path) print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"],path)) except Exception as e: print('moxing download {} to {} failed: '.format( multi_data_json[i]["dataset_url"], path) + str(e)) return ### Copy ckpt file from obs to inference image### ### To operate on folders, use mox.file.copy_parallel. If copying a file. ### Please use mox.file.copy to operate the file, this operation is to operate the file def ObsUrlToEnv(obs_ckpt_url, ckpt_url): try: mox.file.copy(obs_ckpt_url, ckpt_url) print("Successfully Download {} to {}".format(obs_ckpt_url,ckpt_url)) except Exception as e: print('moxing download {} to {} failed: '.format(obs_ckpt_url, ckpt_url) + str(e)) return ### Copy the output result to obs### def EnvToObs(train_dir, obs_train_url): try: mox.file.copy_parallel(train_dir, obs_train_url) print("Successfully Upload {} to {}".format(train_dir,obs_train_url)) except Exception as e: print('moxing upload {} to {} failed: '.format(train_dir,obs_train_url) + str(e)) return ### --data_url,--multi_data_url,--ckpt_url,--result_url,--device_target,These 5 parameters must be defined first in a multi dataset inference task, ### otherwise an error will be reported. ### There is no need to add these parameters to the running parameters of the Qizhi platform, ### because they are predefined in the background, you only need to define them in your code. parser = argparse.ArgumentParser(description='MindSpore Lenet Example') parser.add_argument('--data_url', type=str, default= '/cache/data1/', help='path where the dataset is saved') parser.add_argument('--multi_data_url', type=str, default= '/cache/data/', help='path where the dataset is saved') parser.add_argument('--ckpt_url', help='model to save/load', default= '/cache/checkpoint.ckpt') parser.add_argument('--result_url', help='result folder to save/load', default= '/cache/result/') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], help='device where the code will be implemented (default: Ascend)') if __name__ == "__main__": args = parser.parse_args() ###Initialize the data and result directories in the inference image### data_dir = '/cache/data' result_dir = '/cache/result' ckpt_url = '/cache/checkpoint.ckpt' if not os.path.exists(data_dir): os.makedirs(data_dir) if not os.path.exists(result_dir): os.makedirs(result_dir) ###Copy multiple dataset from obs to inference image MultiObsToEnv(args.multi_data_url, data_dir) ###Copy ckpt file from obs to inference image ObsUrlToEnv(args.ckpt_url, ckpt_url) context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) network = LeNet5(cfg.num_classes) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") repeat_size = cfg.epoch_size net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) print("============== Starting Testing ==============") param_dict = load_checkpoint(os.path.join(ckpt_url)) load_param_into_net(network, param_dict) ds_test = create_dataset(os.path.join(data_dir + "/MNISTData", "test"), batch_size=1).create_dict_iterator() data = next(ds_test) images = data["image"].asnumpy() labels = data["label"].asnumpy() print('Tensor:', Tensor(data['image'])) output = model.predict(Tensor(data['image'])) predicted = np.argmax(output.asnumpy(), axis=1) pred = np.argmax(output.asnumpy(), axis=1) print('predicted:', predicted) print('pred:', pred) print(f'Predicted: "{predicted[0]}", Actual: "{labels[0]}"') filename = 'result.txt' file_path = os.path.join(result_dir, filename) with open(file_path, 'a+') as file: file.write(" {}: {:.2f} \n".format("Predicted", predicted[0])) ###Copy result data from the local running environment back to obs, ###and download it in the inference task corresponding to the Qizhi platform EnvToObs(result_dir, args.result_url)