| @@ -0,0 +1,92 @@ | |||
| """ | |||
| ######################## train lenet example ######################## | |||
| train lenet and get network model files(.ckpt) | |||
| """ | |||
| #!/usr/bin/python | |||
| #coding=utf-8 | |||
| import os | |||
| import argparse | |||
| from config import mnist_cfg as cfg | |||
| from dataset import create_dataset | |||
| from lenet import LeNet5 | |||
| import mindspore.nn as nn | |||
| from mindspore import context | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.train import Model | |||
| from mindspore.nn.metrics import Accuracy | |||
| from mindspore.common import set_seed | |||
| parser = argparse.ArgumentParser(description='MindSpore Lenet Example') | |||
| parser.add_argument( | |||
| '--device_target', | |||
| type=str, | |||
| default="Ascend", | |||
| choices=['Ascend', 'CPU'], | |||
| help='device where the code will be implemented (default: CPU),若要在启智平台上使用NPU,需要在启智平台训练界面上加上运行参数device_target=Ascend') | |||
| parser.add_argument('--epoch_size', | |||
| type=int, | |||
| default=5, | |||
| help='Training epochs.') | |||
| set_seed(1) | |||
| if __name__ == "__main__": | |||
| args = parser.parse_args() | |||
| print('args:') | |||
| print(args) | |||
| train_dir = '/cache/output' | |||
| data_dir = '/cache/dataset' | |||
| #注意:这里很重要,指定了训练所用的设备CPU还是Ascend NPU | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target=args.device_target) | |||
| #创建数据集 | |||
| ds_train = create_dataset(os.path.join(data_dir, "train"), | |||
| cfg.batch_size) | |||
| if ds_train.get_dataset_size() == 0: | |||
| raise ValueError( | |||
| "Please check dataset size > 0 and batch_size <= dataset size") | |||
| #创建网络 | |||
| network = LeNet5(cfg.num_classes) | |||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") | |||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||
| time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) | |||
| if args.device_target != "Ascend": | |||
| model = Model(network, | |||
| net_loss, | |||
| net_opt, | |||
| metrics={"accuracy": Accuracy()}) | |||
| else: | |||
| model = Model(network, | |||
| net_loss, | |||
| net_opt, | |||
| metrics={"accuracy": Accuracy()}, | |||
| amp_level="O2") | |||
| config_ck = CheckpointConfig( | |||
| save_checkpoint_steps=cfg.save_checkpoint_steps, | |||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||
| #定义模型输出路径 | |||
| ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", | |||
| directory=train_dir, | |||
| config=config_ck) | |||
| #开始训练 | |||
| print("============== Starting Training ==============") | |||
| epoch_size = cfg['epoch_size'] | |||
| if (args.epoch_size): | |||
| epoch_size = args.epoch_size | |||
| print('epoch_size is: ', epoch_size) | |||
| # 测试代码。结果回传 | |||
| os.system("cd /cache/script_for_grampus/ &&./uploader_for_npu " + "/cache/code") | |||
| model.train(epoch_size, | |||
| ds_train, | |||
| callbacks=[time_cb, ckpoint_cb, | |||
| LossMonitor()]) | |||
| print("============== Finish Training ==============") | |||