| @@ -0,0 +1,80 @@ | |||
| #!/usr/bin/python | |||
| #coding=utf-8 | |||
| ''' | |||
| GPU INFERENCE INSTANCE | |||
| If there are Chinese comments in the code,please add at the beginning: | |||
| #!/usr/bin/python | |||
| #coding=utf-8 | |||
| Due to the adaptability of a100, please use the recommended image of the | |||
| platform with cuda 11.Then adjust the code and submit the image. | |||
| The image of this example is: dockerhub.pcl.ac.cn:5000/user-images/openi:cuda111_python37_pytorch191 | |||
| In the environment, the uploaded dataset will be automatically placed in the /dataset directory. | |||
| if MnistDataset_torch.zip is selected,Then the dataset directory is /dataset/test; | |||
| The model file selected is in /model directory. | |||
| The result download path is under /result . and the Qizhi platform will provide file downloads under the /result directory. | |||
| 本例中的镜像是dockerhub.pcl.ac.cn:5000/user-images/openi:cuda111_python37_pytorch191 | |||
| 选择的数据集被放置在/dataset目录 | |||
| 选择的模型文件放置在/model目录 | |||
| 输出结果路径是/result目录 | |||
| !!!注意:目前推理的资源环境不支持联网,所以镜像无法使用公网镜像,镜像必须先提交到启智平台;推理的数据集也需要先上传到启智平台 | |||
| ''' | |||
| import numpy as np | |||
| import torch | |||
| from torchvision.datasets import mnist | |||
| from torch.utils.data import DataLoader | |||
| from torchvision.transforms import ToTensor | |||
| import os | |||
| import argparse | |||
| from model import Model | |||
| # Training settings | |||
| parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |||
| #获取模型文件名称 | |||
| parser.add_argument('--modelname', help='model name') | |||
| if __name__ == '__main__': | |||
| args, unknown = parser.parse_known_args() | |||
| print('cuda is available:{}'.format(torch.cuda.is_available())) | |||
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |||
| test_dataset = mnist.MNIST(root='/dataset/test', train=False, transform=ToTensor(), | |||
| download=False) | |||
| test_loader = DataLoader(test_dataset, batch_size=256) | |||
| #如果文件名确定,model_path可以直接写死 | |||
| model_path = '/model/'+args.modelname | |||
| model = Model().to(device) | |||
| checkpoint = torch.load(model_path) | |||
| model.load_state_dict(checkpoint['model']) | |||
| model.eval() | |||
| correct = 0 | |||
| _sum = 0 | |||
| for idx, (test_x, test_label) in enumerate(test_loader): | |||
| test_x = test_x | |||
| test_label = test_label | |||
| predict_y = model(test_x.to(device).float()).detach() | |||
| predict_ys = np.argmax(predict_y.cpu(), axis=-1) | |||
| label_np = test_label.numpy() | |||
| _ = predict_ys == test_label | |||
| correct += np.sum(_.numpy(), axis=-1) | |||
| _sum += _.shape[0] | |||
| print('accuracy: {:.2f}'.format(correct / _sum)) | |||
| #结果写入/result | |||
| filename = 'result.txt' | |||
| file_path = os.path.join('/result', filename) | |||
| with open(file_path, 'w') as file: | |||
| file.write('accuracy: {:.2f}'.format(correct / _sum)) | |||