# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy import os import os.path as osp import mmcv import torch from mmcv import DictAction from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, wrap_fp16_model) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from tools.analysis_tools.robustness_eval import get_results from mmdet import datasets from mmdet.apis import multi_gpu_test, set_random_seed, single_gpu_test from mmdet.core import eval_map from mmdet.datasets import build_dataloader, build_dataset from mmdet.models import build_detector def coco_eval_with_return(result_files, result_types, coco, max_dets=(100, 300, 1000)): for res_type in result_types: assert res_type in ['proposal', 'bbox', 'segm', 'keypoints'] if mmcv.is_str(coco): coco = COCO(coco) assert isinstance(coco, COCO) eval_results = {} for res_type in result_types: result_file = result_files[res_type] assert result_file.endswith('.json') coco_dets = coco.loadRes(result_file) img_ids = coco.getImgIds() iou_type = 'bbox' if res_type == 'proposal' else res_type cocoEval = COCOeval(coco, coco_dets, iou_type) cocoEval.params.imgIds = img_ids if res_type == 'proposal': cocoEval.params.useCats = 0 cocoEval.params.maxDets = list(max_dets) cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if res_type == 'segm' or res_type == 'bbox': metric_names = [ 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100', 'ARs', 'ARm', 'ARl' ] eval_results[res_type] = { metric_names[i]: cocoEval.stats[i] for i in range(len(metric_names)) } else: eval_results[res_type] = cocoEval.stats return eval_results def voc_eval_with_return(result_file, dataset, iou_thr=0.5, logger='print', only_ap=True): det_results = mmcv.load(result_file) annotations = [dataset.get_ann_info(i) for i in range(len(dataset))] if hasattr(dataset, 'year') and dataset.year == 2007: dataset_name = 'voc07' else: dataset_name = dataset.CLASSES mean_ap, eval_results = eval_map( det_results, annotations, scale_ranges=None, iou_thr=iou_thr, dataset=dataset_name, logger=logger) if only_ap: eval_results = [{ 'ap': eval_results[i]['ap'] } for i in range(len(eval_results))] return mean_ap, eval_results def parse_args(): parser = argparse.ArgumentParser(description='MMDet test detector') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--out', help='output result file') parser.add_argument( '--corruptions', type=str, nargs='+', default='benchmark', choices=[ 'all', 'benchmark', 'noise', 'blur', 'weather', 'digital', 'holdout', 'None', 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter', 'saturate' ], help='corruptions') parser.add_argument( '--severities', type=int, nargs='+', default=[0, 1, 2, 3, 4, 5], help='corruption severity levels') parser.add_argument( '--eval', type=str, nargs='+', choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'], help='eval types') parser.add_argument( '--iou-thr', type=float, default=0.5, help='IoU threshold for pascal voc evaluation') parser.add_argument( '--summaries', type=bool, default=False, help='Print summaries for every corruption and severity') parser.add_argument( '--workers', type=int, default=32, help='workers per gpu') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--show-score-thr', type=float, default=0.3, help='score threshold (default: 0.3)') parser.add_argument('--tmpdir', help='tmp dir for writing some results') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument( '--final-prints', type=str, nargs='+', choices=['P', 'mPC', 'rPC'], default='mPC', help='corruption benchmark metric to print at the end') parser.add_argument( '--final-prints-aggregate', type=str, choices=['all', 'benchmark'], default='benchmark', help='aggregate all results or only those for benchmark corruptions') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() assert args.out or args.show or args.show_dir, \ ('Please specify at least one operation (save or show the results) ' 'with the argument "--out", "--show" or "show-dir"') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True if args.workers == 0: args.workers = cfg.data.workers_per_gpu # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # set random seeds if args.seed is not None: set_random_seed(args.seed) if 'all' in args.corruptions: corruptions = [ 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter', 'saturate' ] elif 'benchmark' in args.corruptions: corruptions = [ 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression' ] elif 'noise' in args.corruptions: corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise'] elif 'blur' in args.corruptions: corruptions = [ 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur' ] elif 'weather' in args.corruptions: corruptions = ['snow', 'frost', 'fog', 'brightness'] elif 'digital' in args.corruptions: corruptions = [ 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression' ] elif 'holdout' in args.corruptions: corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate'] elif 'None' in args.corruptions: corruptions = ['None'] args.severities = [0] else: corruptions = args.corruptions rank, _ = get_dist_info() aggregated_results = {} for corr_i, corruption in enumerate(corruptions): aggregated_results[corruption] = {} for sev_i, corruption_severity in enumerate(args.severities): # evaluate severity 0 (= no corruption) only once if corr_i > 0 and corruption_severity == 0: aggregated_results[corruption][0] = \ aggregated_results[corruptions[0]][0] continue test_data_cfg = copy.deepcopy(cfg.data.test) # assign corruption and severity if corruption_severity > 0: corruption_trans = dict( type='Corrupt', corruption=corruption, severity=corruption_severity) # TODO: hard coded "1", we assume that the first step is # loading images, which needs to be fixed in the future test_data_cfg['pipeline'].insert(1, corruption_trans) # print info print(f'\nTesting {corruption} at severity {corruption_severity}') # build the dataloader # TODO: support multiple images per gpu # (only minor changes are needed) dataset = build_dataset(test_data_cfg) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=args.workers, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint( model, args.checkpoint, map_location='cpu') # old versions did not save class info in checkpoints, # this walkaround is for backward compatibility if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) show_dir = args.show_dir if show_dir is not None: show_dir = osp.join(show_dir, corruption) show_dir = osp.join(show_dir, str(corruption_severity)) if not osp.exists(show_dir): osp.makedirs(show_dir) outputs = single_gpu_test(model, data_loader, args.show, show_dir, args.show_score_thr) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir) if args.out and rank == 0: eval_results_filename = ( osp.splitext(args.out)[0] + '_results' + osp.splitext(args.out)[1]) mmcv.dump(outputs, args.out) eval_types = args.eval if cfg.dataset_type == 'VOCDataset': if eval_types: for eval_type in eval_types: if eval_type == 'bbox': test_dataset = mmcv.runner.obj_from_dict( cfg.data.test, datasets) logger = 'print' if args.summaries else None mean_ap, eval_results = \ voc_eval_with_return( args.out, test_dataset, args.iou_thr, logger) aggregated_results[corruption][ corruption_severity] = eval_results else: print('\nOnly "bbox" evaluation \ is supported for pascal voc') else: if eval_types: print(f'Starting evaluate {" and ".join(eval_types)}') if eval_types == ['proposal_fast']: result_file = args.out else: if not isinstance(outputs[0], dict): result_files = dataset.results2json( outputs, args.out) else: for name in outputs[0]: print(f'\nEvaluating {name}') outputs_ = [out[name] for out in outputs] result_file = args.out + f'.{name}' result_files = dataset.results2json( outputs_, result_file) eval_results = coco_eval_with_return( result_files, eval_types, dataset.coco) aggregated_results[corruption][ corruption_severity] = eval_results else: print('\nNo task was selected for evaluation;' '\nUse --eval to select a task') # save results after each evaluation mmcv.dump(aggregated_results, eval_results_filename) if rank == 0: # print final results print('\nAggregated results:') prints = args.final_prints aggregate = args.final_prints_aggregate if cfg.dataset_type == 'VOCDataset': get_results( eval_results_filename, dataset='voc', prints=prints, aggregate=aggregate) else: get_results( eval_results_filename, dataset='coco', prints=prints, aggregate=aggregate) if __name__ == '__main__': main()