# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp import tempfile import mmcv import numpy as np import pytest import torch from mmdet.core import visualization as vis def test_color(): assert vis.color_val_matplotlib(mmcv.Color.blue) == (0., 0., 1.) assert vis.color_val_matplotlib('green') == (0., 1., 0.) assert vis.color_val_matplotlib((1, 2, 3)) == (3 / 255, 2 / 255, 1 / 255) assert vis.color_val_matplotlib(100) == (100 / 255, 100 / 255, 100 / 255) assert vis.color_val_matplotlib(np.zeros(3, dtype=np.int)) == (0., 0., 0.) # forbid white color with pytest.raises(TypeError): vis.color_val_matplotlib([255, 255, 255]) # forbid float with pytest.raises(TypeError): vis.color_val_matplotlib(1.0) # overflowed with pytest.raises(AssertionError): vis.color_val_matplotlib((0, 0, 500)) def test_imshow_det_bboxes(): tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image', 'image.jpg') image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) out_image = vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape assert not np.allclose(image, out_image) os.remove(tmp_filename) # test grayscale images image = np.ones((10, 10), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) out_image = vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape[:2] os.remove(tmp_filename) # test shaped (0,) image = np.ones((10, 10, 3), np.uint8) bbox = np.ones((0, 4)) label = np.ones((0, )) vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test mask image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) segms = np.random.random((2, 10, 10)) > 0.5 segms = np.array(segms, np.int32) vis.imshow_det_bboxes( image, bbox, label, segms, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test tensor mask type error with pytest.raises(AttributeError): segms = torch.tensor(segms) vis.imshow_det_bboxes(image, bbox, label, segms, show=False) def test_imshow_gt_det_bboxes(): tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image', 'image.jpg') image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) annotation = dict(gt_bboxes=bbox, gt_labels=label) det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]]) result = [det_result] out_image = vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape assert not np.allclose(image, out_image) os.remove(tmp_filename) # test grayscale images image = np.ones((10, 10), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) annotation = dict(gt_bboxes=bbox, gt_labels=label) det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]]) result = [det_result] vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test numpy mask gt_mask = np.ones((2, 10, 10)) annotation['gt_masks'] = gt_mask vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test tensor mask gt_mask = torch.ones((2, 10, 10)) annotation['gt_masks'] = gt_mask vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test unsupported type annotation['gt_masks'] = [] with pytest.raises(TypeError): vis.imshow_gt_det_bboxes(image, annotation, result, show=False)