import sys import os import random import numpy as np sys.path.append("/home/shanwei-luo/userdata/mmdetection") from mmdet.apis import (async_inference_detector, inference_detector, init_detector, show_result_pyplot) class_AOI_name = {"bu_pi_pei":"1","fang_xiang_fan":"2","err.txt_c_not_f":"3", "shang_xi_bu_lia":"4"} config_file_1 = '/home/shanwei-luo/userdata/mmdetection/work_dirs/AD_pd_test01/AD_pd_test01.py' checkpoint_file_1 = '/home/shanwei-luo/userdata/mmdetection/work_dirs/AD_pd_test01/epoch_18.pth' imgs_ok_path = '/home/shanwei-luo/userdata/pd_datasets/20220605/OK/' imgs_ng_path = '/home/shanwei-luo/userdata/pd_datasets/20220605/NG/' model_1 = init_detector(config_file_1, checkpoint_file_1, device='cuda:0') imgs_ok = os.listdir(imgs_ok_path) imgs_ng = os.listdir(imgs_ng_path) count_label_ok = len(imgs_ok) count_label_ng = len(imgs_ng) print(count_label_ok,count_label_ng) imgs_labels = [] imgs_name = [] for img in imgs_ok: '''img_name = img.split("@") if img_name[2] in class_AOI_name.keys(): count_label_ok -= 1 continue''' imgs_labels.append(0) imgs_name.append(imgs_ok_path+img) for img in imgs_ng: '''img_name = img.split("@") if img_name[2] in class_AOI_name.keys(): count_label_ng -= 1 continue''' imgs_labels.append(1) imgs_name.append(imgs_ng_path+img) print(count_label_ok,count_label_ng, len(imgs_labels)) print("before infer") index = 0 num = len(imgs_name) results_1 = [] step = 64 while indexscore_thr: res_predict = 1 imgs_results_1.append(res_predict) #print(len(imgs_results_1)) count_ng = 0 count_ok = 0 for i in range(len(imgs_labels)): if imgs_labels[i]==0 and imgs_results_1[i]==0: count_ok += 1 if imgs_labels[i]==1 and imgs_results_1[i]==1: count_ng += 1 if imgs_labels[i]==1 and imgs_results_1[i]==0: print(imgs_name[i]) print("score_thr:", score_thr, " recall(ok):", count_ok/count_label_ok, " recall(ng):", count_ng/count_label_ng)