# YOLOv3 ## Introduction ```latex @misc{redmon2018yolov3, title={YOLOv3: An Incremental Improvement}, author={Joseph Redmon and Ali Farhadi}, year={2018}, eprint={1804.02767}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Results and Models | Backbone | Scale | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download | | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: | | DarkNet-53 | 320 | 273e | 2.7 | 63.9 | 27.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_320_273e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-421362b6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-20200819_172101.log.json) | | DarkNet-53 | 416 | 273e | 3.8 | 61.2 | 30.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_mstrain-416_273e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-2b60fcd9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-20200819_173424.log.json) | | DarkNet-53 | 608 | 273e | 7.4 | 48.1 | 33.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco_20210518_115020-a2c3acb8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco_20210518_115020.log.json) | ## Mixed Precision Training We also train YOLOv3 with mixed precision training. | Backbone | Scale | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download | | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: | | DarkNet-53 | 608 | 273e | 4.7 | 48.1 | 33.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_fp16_mstrain-608_273e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_fp16_mstrain-608_273e_coco/yolov3_d53_fp16_mstrain-608_273e_coco_20210517_213542-4bc34944.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_fp16_mstrain-608_273e_coco/yolov3_d53_fp16_mstrain-608_273e_coco_20210517_213542.log.json) | ## Lightweight models | Backbone | Scale | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download | | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: | | MobileNetV2 | 416 | 300e | 5.3 | | 23.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_mobilenetv2_mstrain-416_300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_mobilenetv2_mstrain-416_300e_coco/yolov3_mobilenetv2_mstrain-416_300e_coco_20210718_010823-f68a07b3.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_mobilenetv2_mstrain-416_300e_coco/yolov3_mobilenetv2_mstrain-416_300e_coco_20210718_010823.log.json) | | MobileNetV2 | 320 | 300e | 3.2 | | 22.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_mobilenetv2_320_300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_mobilenetv2_320_300e_coco/yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_mobilenetv2_320_300e_coco/yolov3_mobilenetv2_320_300e_coco_20210719_215349.log.json) | Notice: We reduce the number of channels to 96 in both head and neck. It can reduce the flops and parameters, which makes these models more suitable for edge devices. ## Credit This implementation originates from the project of Haoyu Wu(@wuhy08) at Western Digital.