Collections: - Name: FP16 Metadata: Training Data: COCO Training Techniques: - Mixed Precision Training Training Resources: 8x V100 GPUs Paper: URL: https://arxiv.org/abs/1710.03740 Title: 'Mixed Precision Training' README: configs/fp16/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/core/fp16/hooks.py#L11 Version: v2.0.0 Models: - Name: faster_rcnn_r50_fpn_fp16_1x_coco In Collection: FP16 Config: configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py Metadata: Training Memory (GB): 3.4 inference time (ms/im): - value: 34.72 hardware: V100 backend: PyTorch batch size: 1 mode: FP16 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 37.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/faster_rcnn_r50_fpn_fp16_1x_coco/faster_rcnn_r50_fpn_fp16_1x_coco_20200204-d4dc1471.pth - Name: mask_rcnn_r50_fpn_fp16_1x_coco In Collection: FP16 Config: configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py Metadata: Training Memory (GB): 3.6 inference time (ms/im): - value: 41.49 hardware: V100 backend: PyTorch batch size: 1 mode: FP16 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.1 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 34.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_1x_coco/mask_rcnn_r50_fpn_fp16_1x_coco_20200205-59faf7e4.pth - Name: mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco In Collection: FP16 Config: configs/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py Metadata: Training Memory (GB): 3.0 Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.9 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth - Name: mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco In Collection: FP16 Config: configs/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py Metadata: Training Memory (GB): 3.1 Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.0 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.6 Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco_20210520_180434-cf8fefa5.pth - Name: retinanet_r50_fpn_fp16_1x_coco In Collection: FP16 Config: configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py Metadata: Training Memory (GB): 2.8 inference time (ms/im): - value: 31.65 hardware: V100 backend: PyTorch batch size: 1 mode: FP16 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 36.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702-0dbfb212.pth