_base_ = [ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='ATSS', backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='ATSSHead', num_classes=11, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) dataset_type = 'CocoDataset' classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu') img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(400, 400), (500, 500)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']), dict(type='BrightnessTransform', level=5, prob=0.5), dict(type='ContrastTransform', level=5, prob=0.5), dict(type='RandomShift', shift_ratio=0.5), dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=[(400, 400)], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=16, workers_per_gpu=8, train=dict( type=dataset_type, img_prefix='/home/shanwei-luo/teamdata/anomaly_detection_active_learning/data0422/smd12_11_12_hard_score_04/train/images/', classes=classes, ann_file='/home/shanwei-luo/teamdata/anomaly_detection_active_learning/data0422/smd12_11_12_hard_score_04/train/annotations/train.json', pipeline=train_pipeline), val=dict( type=dataset_type, img_prefix='/home/shanwei-luo/teamdata/anomaly_detection_active_learning/data0422/smd12_2112_coco/test/images/', classes=classes, ann_file='/home/shanwei-luo/teamdata/anomaly_detection_active_learning/data0422/smd12_2112_coco/test/annotations/test.json', pipeline=test_pipeline), test=dict( type=dataset_type, img_prefix='/home/shanwei-luo/teamdata/anomaly_detection_active_learning/data0422/smd12_2112_coco/test/images/', classes=classes, ann_file='/home/shanwei-luo/teamdata/anomaly_detection_active_learning/data0422/smd12_2112_coco/test/annotations/test.json', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='CosineAnnealing', warmup='linear', warmup_iters=1000, warmup_ratio=1.0 / 10, min_lr_ratio=1e-5) runner = dict(type='EpochBasedRunner', max_epochs=60) evaluation = dict(interval=2, metric='bbox') checkpoint_config = dict(interval=2)