import sys import os import random sys.path.append("/home/shanwei-luo/userdata/mmdetection") from mmdet.apis import (async_inference_detector, inference_detector, init_detector, show_result_pyplot) config_file_1 = '/home/shanwei-luo/userdata/mmdetection/work_dirs/AD_dsxw_test50/AD_dsxw_test50.py' checkpoint_file_1 = '/home/shanwei-luo/userdata/mmdetection/work_dirs/AD_dsxw_test50/epoch_50.pth' img_path = '/home/shanwei-luo/userdata/datasets/dsxw_test_SMD11_2201_2202/images/' label_path = '/home/shanwei-luo/userdata/datasets/dsxw_test_SMD11_2201_2202/labels/' model_1 = init_detector(config_file_1, checkpoint_file_1, device='cuda:1') imgs = os.listdir(img_path) labels = os.listdir(label_path) #img_id = random.randint(0, len(label_path)) label_ng = len(labels) label_ok = len(imgs)-label_ng print(label_ok, label_ng) imgs_labels = [] imgs_name = [] #imgs = imgs[:40] for img in imgs: label = img[:-3]+'txt' res_label = 0 if label in labels: res_label = 1 imgs_labels.append(res_label) imgs_name.append(img_path+img) print(len(imgs_labels)) print("before infer") index = 0 num = len(imgs_name) results_1 = [] results_2 = [] step = 32 while index0: res_predict = max(max(i[:,4]), res_predict) print(res_predict) imgs_results_1.append(res_predict) print(len(imgs_results_1)) f = open("CI_SMD11.txt", "w") for i in range(len(imgs_labels)): print(imgs[i], imgs_results_1[i]) f.write(imgs[i]+" "+str(imgs_results_1[i])+"\n") f.close()