_base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py' model = dict( neck=dict( type='FPN',#FPN PAFPN in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), roi_head=dict( bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=5, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=5, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=5, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ])) dataset_type = 'CocoDataset' classes = ('jinshuyiwu','loutong','fanghanyiwu','yanghua','hong') img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(200, 200), (300, 300)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']), dict(type='BrightnessTransform', level=5, prob=0.5), dict(type='ContrastTransform', level=5, prob=0.5), dict(type='RandomShift', shift_ratio=0.5), dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=[(200, 200), (300, 300)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=32, workers_per_gpu=8, train=dict( type=dataset_type, img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect_v3/images/train/', classes=classes, ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect_v3/annotations/train_new.json', pipeline=train_pipeline), val=dict( type=dataset_type, img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect_v3/images/val/', classes=classes, ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect_v3/annotations/val_new.json', pipeline=test_pipeline), test=dict( type=dataset_type, img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect_v3/images/val/', classes=classes, ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect_v3/annotations/val_new.json', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='CosineAnnealing', warmup='linear', warmup_iters=2000, warmup_ratio=1.0 / 10, min_lr_ratio=1e-5) runner = dict(type='EpochBasedRunner', max_epochs=60) evaluation = dict(interval=5, metric='bbox')