You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_yh_test03.py 4.9 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. _base_ = [
  2. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  3. ]
  4. norm_cfg = dict(type='SyncBN', requires_grad=True)
  5. model = dict(
  6. type='ATSS',
  7. backbone=dict(
  8. type='ResNeXt',
  9. depth=101,
  10. groups=64,
  11. base_width=4,
  12. num_stages=4,
  13. out_indices=(0, 1, 2, 3),
  14. frozen_stages=1,
  15. norm_cfg=norm_cfg,
  16. style='pytorch',
  17. init_cfg=dict(
  18. type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')),
  19. neck=dict(
  20. type='FPN',
  21. in_channels=[256, 512, 1024, 2048],
  22. out_channels=256,
  23. start_level=1,
  24. add_extra_convs='on_output',
  25. num_outs=5),
  26. bbox_head=dict(
  27. type='ATSSHead',
  28. num_classes=2,
  29. in_channels=256,
  30. stacked_convs=4,
  31. feat_channels=256,
  32. anchor_generator=dict(
  33. type='AnchorGenerator',
  34. ratios=[1.0],
  35. octave_base_scale=8,
  36. scales_per_octave=1,
  37. strides=[8, 16, 32, 64, 128]),
  38. bbox_coder=dict(
  39. type='DeltaXYWHBBoxCoder',
  40. target_means=[.0, .0, .0, .0],
  41. target_stds=[0.1, 0.1, 0.2, 0.2]),
  42. loss_cls=dict(
  43. type='FocalLoss',
  44. use_sigmoid=True,
  45. gamma=2.0,
  46. alpha=0.25,
  47. loss_weight=1.0),
  48. loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
  49. loss_centerness=dict(
  50. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
  51. # training and testing settings
  52. train_cfg=dict(
  53. assigner=dict(type='ATSSAssigner', topk=9),
  54. allowed_border=-1,
  55. pos_weight=-1,
  56. debug=False),
  57. test_cfg=dict(
  58. nms_pre=1000,
  59. min_bbox_size=0,
  60. score_thr=0.05,
  61. nms=dict(type='nms', iou_threshold=0.6),
  62. max_per_img=100))
  63. dataset_type = 'CocoDataset'
  64. classes = ('zangwuyise', 'guashang')
  65. img_norm_cfg = dict(
  66. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  67. train_pipeline = [
  68. dict(type='LoadImageFromFile'),
  69. dict(type='LoadAnnotations', with_bbox=True),
  70. dict(
  71. type='Resize',
  72. img_scale=[(1024, 1024), (1280, 1280)],
  73. multiscale_mode='value',
  74. keep_ratio=True),
  75. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  76. dict(type='BrightnessTransform', level=5, prob=0.5),
  77. dict(type='ContrastTransform', level=5, prob=0.5),
  78. dict(type='RandomShift', shift_ratio=0.5),
  79. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  80. dict(type='Normalize', **img_norm_cfg),
  81. dict(type='Pad', size_divisor=32),
  82. dict(type='DefaultFormatBundle'),
  83. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  84. ]
  85. test_pipeline = [
  86. dict(type='LoadImageFromFile'),
  87. dict(
  88. type='MultiScaleFlipAug',
  89. img_scale=[(1280, 1280)],
  90. flip=False,
  91. transforms=[
  92. dict(type='Resize', keep_ratio=True),
  93. dict(type='RandomFlip'),
  94. dict(type='Normalize', **img_norm_cfg),
  95. dict(type='Pad', size_divisor=32),
  96. dict(type='ImageToTensor', keys=['img']),
  97. dict(type='Collect', keys=['img']),
  98. ])
  99. ]
  100. data = dict(
  101. samples_per_gpu=2,
  102. workers_per_gpu=8,
  103. train=dict(
  104. type=dataset_type,
  105. img_prefix='/home/shanwei-luo/userdata/datasets/yuhai_dataset/yuhai_dataset0406/surf/images/',
  106. classes=classes,
  107. ann_file='/home/shanwei-luo/userdata/datasets/yuhai_dataset/yuhai_dataset0406/surf/annotations/train_cat_mode_addok.json',
  108. pipeline=train_pipeline),
  109. val=dict(
  110. type=dataset_type,
  111. img_prefix='/home/shanwei-luo/userdata/datasets/yuhai_dataset/yuhai_dataset0406/surf/images/',
  112. classes=classes,
  113. ann_file='/home/shanwei-luo/userdata/datasets/yuhai_dataset/yuhai_dataset0406/surf/annotations/val_cat_mode_addok.json',
  114. pipeline=test_pipeline),
  115. test=dict(
  116. type=dataset_type,
  117. img_prefix='/home/shanwei-luo/userdata/datasets/yuhai_dataset/yuhai_dataset0406/surf/images/',
  118. classes=classes,
  119. ann_file='/home/shanwei-luo/userdata/datasets/yuhai_dataset/yuhai_dataset0406/surf/val_cat_mode_addok.json',
  120. pipeline=test_pipeline))
  121. # optimizer
  122. optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
  123. optimizer_config = dict(grad_clip=None)
  124. # learning policy
  125. lr_config = dict(
  126. policy='CosineAnnealing',
  127. warmup='linear',
  128. warmup_iters=100,
  129. warmup_ratio=1.0 / 10,
  130. min_lr_ratio=1e-5)
  131. runner = dict(type='EpochBasedRunner', max_epochs=60)
  132. evaluation = dict(interval=2, metric='bbox')
  133. checkpoint_config = dict(interval=2)
  134. log_config = dict(
  135. interval=1,
  136. hooks=[
  137. dict(type='TextLoggerHook'),
  138. # dict(type='TensorboardLoggerHook')
  139. ])

No Description

Contributors (1)