You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test73_ft.py 4.8 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. _base_ = ['../_base_/default_runtime.py']
  2. norm_cfg = dict(type='SyncBN', requires_grad=True)
  3. model = dict(
  4. type='ATSS',
  5. backbone=dict(
  6. type='ResNeXt',
  7. depth=101,
  8. groups=64,
  9. base_width=4,
  10. num_stages=4,
  11. out_indices=(0, 1, 2, 3),
  12. frozen_stages=1,
  13. norm_cfg=norm_cfg,
  14. style='pytorch',
  15. init_cfg=dict(
  16. type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')),
  17. neck=dict(
  18. type='FPN',
  19. in_channels=[256, 512, 1024, 2048],
  20. out_channels=256,
  21. start_level=1,
  22. add_extra_convs='on_output',
  23. num_outs=5),
  24. bbox_head=dict(
  25. type='ATSSHead',
  26. num_classes=11,
  27. in_channels=256,
  28. stacked_convs=4,
  29. feat_channels=256,
  30. anchor_generator=dict(
  31. type='AnchorGenerator',
  32. ratios=[1.0],
  33. octave_base_scale=8,
  34. scales_per_octave=1,
  35. strides=[8, 16, 32, 64, 128]),
  36. bbox_coder=dict(
  37. type='DeltaXYWHBBoxCoder',
  38. target_means=[.0, .0, .0, .0],
  39. target_stds=[0.1, 0.1, 0.2, 0.2]),
  40. loss_cls=dict(
  41. type='FocalLoss',
  42. use_sigmoid=True,
  43. gamma=2.0,
  44. alpha=0.25,
  45. loss_weight=1.0),
  46. loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
  47. loss_centerness=dict(
  48. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
  49. # training and testing settings
  50. train_cfg=dict(
  51. assigner=dict(type='ATSSAssigner', topk=9),
  52. allowed_border=-1,
  53. pos_weight=-1,
  54. debug=False),
  55. test_cfg=dict(
  56. nms_pre=1000,
  57. min_bbox_size=0,
  58. score_thr=0.05,
  59. nms=dict(type='nms', iou_threshold=0.6),
  60. max_per_img=100))
  61. dataset_type = 'CocoDataset'
  62. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  63. img_norm_cfg = dict(
  64. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  65. train_pipeline = [
  66. dict(type='LoadImageFromFile'),
  67. dict(type='LoadAnnotations', with_bbox=True),
  68. dict(
  69. type='Resize',
  70. img_scale=[(400, 400), (500, 500)],
  71. multiscale_mode='value',
  72. keep_ratio=True),
  73. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  74. dict(type='BrightnessTransform', level=5, prob=0.5),
  75. dict(type='ContrastTransform', level=5, prob=0.5),
  76. dict(type='RandomShift', shift_ratio=0.5),
  77. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  78. dict(type='Normalize', **img_norm_cfg),
  79. dict(type='Pad', size_divisor=32),
  80. dict(type='DefaultFormatBundle'),
  81. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  82. ]
  83. test_pipeline = [
  84. dict(type='LoadImageFromFile'),
  85. dict(
  86. type='MultiScaleFlipAug',
  87. img_scale=[(400, 400)],
  88. flip=False,
  89. transforms=[
  90. dict(type='Resize', keep_ratio=True),
  91. dict(type='RandomFlip'),
  92. dict(type='Normalize', **img_norm_cfg),
  93. dict(type='Pad', size_divisor=32),
  94. dict(type='ImageToTensor', keys=['img']),
  95. dict(type='Collect', keys=['img']),
  96. ])
  97. ]
  98. data = dict(
  99. samples_per_gpu=16,
  100. workers_per_gpu=8,
  101. train=dict(
  102. type=dataset_type,
  103. img_prefix='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15_MLOPS/v3_finetune/dsxw_train/images/',
  104. classes=classes,
  105. ann_file='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15_MLOPS/v3_finetune/dsxw_train/annotations/train.json',
  106. pipeline=train_pipeline),
  107. val=dict(
  108. type=dataset_type,
  109. img_prefix='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15_MLOPS/v1/dsxw_test/images/',
  110. classes=classes,
  111. ann_file='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15_MLOPS/v1/dsxw_test/annotations/test.json',
  112. pipeline=test_pipeline),
  113. test=dict(
  114. type=dataset_type,
  115. img_prefix='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15_MLOPS/v1/dsxw_test/images/',
  116. classes=classes,
  117. ann_file='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15_MLOPS/v1/dsxw_test/annotations/test.json',
  118. pipeline=test_pipeline))
  119. # optimizer
  120. optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
  121. optimizer_config = dict(grad_clip=None)
  122. # learning policy
  123. lr_config = dict(
  124. policy='CosineAnnealing',
  125. min_lr_ratio=1e-5)
  126. runner = dict(type='EpochBasedRunner', max_epochs=10)
  127. evaluation = dict(interval=1, metric='bbox')
  128. checkpoint_config = dict(interval=1)
  129. load_from = '/home/shanwei-luo/userdata/mmdetection/work_dirs/AD_dsxw_test70/epoch_38.pth'

No Description

Contributors (1)